L(s) = 1 | + 17.8i·5-s − 22.6·7-s − 44.2i·11-s + 17.8i·13-s − 70·17-s − 82.2i·19-s + 158.·23-s − 195.·25-s + 125. i·29-s − 404. i·35-s − 375. i·37-s + 182·41-s − 132. i·43-s − 316.·47-s + 169.·49-s + ⋯ |
L(s) = 1 | + 1.59i·5-s − 1.22·7-s − 1.21i·11-s + 0.381i·13-s − 0.998·17-s − 0.992i·19-s + 1.43·23-s − 1.56·25-s + 0.801i·29-s − 1.95i·35-s − 1.66i·37-s + 0.693·41-s − 0.471i·43-s − 0.983·47-s + 0.492·49-s + ⋯ |
Λ(s)=(=(1152s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1152s/2ΓC(s+3/2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1152
= 27⋅32
|
Sign: |
1
|
Analytic conductor: |
67.9702 |
Root analytic conductor: |
8.24440 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1152(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1152, ( :3/2), 1)
|
Particular Values
L(2) |
≈ |
1.314160053 |
L(21) |
≈ |
1.314160053 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−17.8iT−125T2 |
| 7 | 1+22.6T+343T2 |
| 11 | 1+44.2iT−1.33e3T2 |
| 13 | 1−17.8iT−2.19e3T2 |
| 17 | 1+70T+4.91e3T2 |
| 19 | 1+82.2iT−6.85e3T2 |
| 23 | 1−158.T+1.21e4T2 |
| 29 | 1−125.iT−2.43e4T2 |
| 31 | 1+2.97e4T2 |
| 37 | 1+375.iT−5.06e4T2 |
| 41 | 1−182T+6.89e4T2 |
| 43 | 1+132.iT−7.95e4T2 |
| 47 | 1+316.T+1.03e5T2 |
| 53 | 1+125.iT−1.48e5T2 |
| 59 | 1−82.2iT−2.05e5T2 |
| 61 | 1−232.iT−2.26e5T2 |
| 67 | 1−221.iT−3.00e5T2 |
| 71 | 1−113.T+3.57e5T2 |
| 73 | 1−910T+3.89e5T2 |
| 79 | 1−678.T+4.93e5T2 |
| 83 | 1−714.iT−5.71e5T2 |
| 89 | 1−546T+7.04e5T2 |
| 97 | 1+490T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.319191630723803869816689832846, −8.867088036165347399582991566143, −7.50994398730473879851690874466, −6.63726675884539034109106469708, −6.50934994326694564621360151637, −5.31008946437703544524167275836, −3.83455927725786060119868363253, −3.10430814164095505884132287060, −2.42838453537155661987102857042, −0.47231757526067068572610863332,
0.70515643916818248835163208312, 1.88337866719055649217695386256, 3.22418600486866050122847410967, 4.40899517226769976302220527345, 4.96347475837193427802990757268, 6.05830774221144873085812928053, 6.86214296114207818759319386300, 7.921430874119922447323193223720, 8.673684342845594809792989673379, 9.636510526807099895753218902705