L(s) = 1 | + (1.74 + 1.74i)5-s − 2.55i·7-s + (0.473 + 0.473i)11-s + (−2.88 + 2.88i)13-s + 6.44·17-s + (4.55 − 4.55i)19-s + 2.82i·23-s + 1.11i·25-s + (−3.07 + 3.07i)29-s + 6.55·31-s + (4.47 − 4.47i)35-s + (2.72 + 2.72i)37-s + 0.788i·41-s + (0.389 + 0.389i)43-s − 2.82·47-s + ⋯ |
L(s) = 1 | + (0.782 + 0.782i)5-s − 0.966i·7-s + (0.142 + 0.142i)11-s + (−0.800 + 0.800i)13-s + 1.56·17-s + (1.04 − 1.04i)19-s + 0.589i·23-s + 0.223i·25-s + (−0.571 + 0.571i)29-s + 1.17·31-s + (0.756 − 0.756i)35-s + (0.448 + 0.448i)37-s + 0.123i·41-s + (0.0594 + 0.0594i)43-s − 0.412·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.270i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.962 - 0.270i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.956173302\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.956173302\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1.74 - 1.74i)T + 5iT^{2} \) |
| 7 | \( 1 + 2.55iT - 7T^{2} \) |
| 11 | \( 1 + (-0.473 - 0.473i)T + 11iT^{2} \) |
| 13 | \( 1 + (2.88 - 2.88i)T - 13iT^{2} \) |
| 17 | \( 1 - 6.44T + 17T^{2} \) |
| 19 | \( 1 + (-4.55 + 4.55i)T - 19iT^{2} \) |
| 23 | \( 1 - 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (3.07 - 3.07i)T - 29iT^{2} \) |
| 31 | \( 1 - 6.55T + 31T^{2} \) |
| 37 | \( 1 + (-2.72 - 2.72i)T + 37iT^{2} \) |
| 41 | \( 1 - 0.788iT - 41T^{2} \) |
| 43 | \( 1 + (-0.389 - 0.389i)T + 43iT^{2} \) |
| 47 | \( 1 + 2.82T + 47T^{2} \) |
| 53 | \( 1 + (2.57 + 2.57i)T + 53iT^{2} \) |
| 59 | \( 1 + (-4 - 4i)T + 59iT^{2} \) |
| 61 | \( 1 + (-4.38 + 4.38i)T - 61iT^{2} \) |
| 67 | \( 1 + (-2.11 + 2.11i)T - 67iT^{2} \) |
| 71 | \( 1 + 5.11iT - 71T^{2} \) |
| 73 | \( 1 - 14.7iT - 73T^{2} \) |
| 79 | \( 1 + 6.31T + 79T^{2} \) |
| 83 | \( 1 + (-0.641 + 0.641i)T - 83iT^{2} \) |
| 89 | \( 1 - 6.31iT - 89T^{2} \) |
| 97 | \( 1 - 12.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.819928376249494076808812433529, −9.394740891726390172170089924915, −7.997505066813947680359242835648, −7.18393441412354150277593604430, −6.71347505666456334929395607106, −5.60377034751894040044436323111, −4.70469277005981514218970748721, −3.52413343893035994883828299635, −2.57704024963537383648417071792, −1.20334648314940526250947193952,
1.08849537860410229588779211743, 2.36463404681112542349452444571, 3.41431641680874553476076513516, 4.87082459901987955939527537793, 5.60208039458041338039176108334, 6.00522583679409293279697898483, 7.49064505479072828174747790040, 8.151246799812984017778424450523, 9.030025656069348557162681757354, 9.838280131469858866310239845481