L(s) = 1 | + (−1 − i)5-s + 2i·7-s + (−1 − i)11-s + (1 − i)13-s + 2·17-s + (3 − 3i)19-s + 6i·23-s − 3i·25-s + (3 − 3i)29-s + 8·31-s + (2 − 2i)35-s + (−3 − 3i)37-s + (5 + 5i)43-s + 8·47-s + 3·49-s + ⋯ |
L(s) = 1 | + (−0.447 − 0.447i)5-s + 0.755i·7-s + (−0.301 − 0.301i)11-s + (0.277 − 0.277i)13-s + 0.485·17-s + (0.688 − 0.688i)19-s + 1.25i·23-s − 0.600i·25-s + (0.557 − 0.557i)29-s + 1.43·31-s + (0.338 − 0.338i)35-s + (−0.493 − 0.493i)37-s + (0.762 + 0.762i)43-s + 1.16·47-s + 0.428·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.495599919\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.495599919\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (1 + i)T + 5iT^{2} \) |
| 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 + (1 + i)T + 11iT^{2} \) |
| 13 | \( 1 + (-1 + i)T - 13iT^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 + (-3 + 3i)T - 19iT^{2} \) |
| 23 | \( 1 - 6iT - 23T^{2} \) |
| 29 | \( 1 + (-3 + 3i)T - 29iT^{2} \) |
| 31 | \( 1 - 8T + 31T^{2} \) |
| 37 | \( 1 + (3 + 3i)T + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + (-5 - 5i)T + 43iT^{2} \) |
| 47 | \( 1 - 8T + 47T^{2} \) |
| 53 | \( 1 + (5 + 5i)T + 53iT^{2} \) |
| 59 | \( 1 + (-3 - 3i)T + 59iT^{2} \) |
| 61 | \( 1 + (-9 + 9i)T - 61iT^{2} \) |
| 67 | \( 1 + (5 - 5i)T - 67iT^{2} \) |
| 71 | \( 1 + 10iT - 71T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (-1 + i)T - 83iT^{2} \) |
| 89 | \( 1 + 4iT - 89T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.658496896538601961331976815719, −8.873291497111612933846721136141, −8.139892417713389916884358620360, −7.46307234656750136158883553530, −6.25636526933740798606536198205, −5.48036594909140966086025964907, −4.64393832626075969475875135623, −3.47647764324876054293851957952, −2.48332182477886635370329340956, −0.856868779798263474989688419630,
1.06727437927036061854231765705, 2.67381450202748859838066339126, 3.69832807006811576990550525925, 4.52825377038217125519558597020, 5.62414970792290860843230946545, 6.70570142232194579444992061677, 7.33673649050853434985665087803, 8.104087916944975258131967421443, 8.977261645849359773452334838514, 10.18467944199865474120508380945