Properties

Label 2-1152-16.5-c1-0-6
Degree 22
Conductor 11521152
Sign 0.7570.653i0.757 - 0.653i
Analytic cond. 9.198769.19876
Root an. cond. 3.032943.03294
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.27 + 1.27i)5-s + 0.158i·7-s + (3.79 + 3.79i)11-s + (4.21 − 4.21i)13-s − 3.05·17-s + (−2.15 + 2.15i)19-s + 2.82i·23-s − 1.76i·25-s + (2.09 − 2.09i)29-s − 4.15·31-s + (−0.202 + 0.202i)35-s + (5.98 + 5.98i)37-s + 2.60i·41-s + (5.75 + 5.75i)43-s − 2.82·47-s + ⋯
L(s)  = 1  + (0.568 + 0.568i)5-s + 0.0600i·7-s + (1.14 + 1.14i)11-s + (1.16 − 1.16i)13-s − 0.740·17-s + (−0.495 + 0.495i)19-s + 0.589i·23-s − 0.353i·25-s + (0.389 − 0.389i)29-s − 0.746·31-s + (−0.0341 + 0.0341i)35-s + (0.984 + 0.984i)37-s + 0.406i·41-s + (0.877 + 0.877i)43-s − 0.412·47-s + ⋯

Functional equation

Λ(s)=(1152s/2ΓC(s)L(s)=((0.7570.653i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.757 - 0.653i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1152s/2ΓC(s+1/2)L(s)=((0.7570.653i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.757 - 0.653i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 11521152    =    27322^{7} \cdot 3^{2}
Sign: 0.7570.653i0.757 - 0.653i
Analytic conductor: 9.198769.19876
Root analytic conductor: 3.032943.03294
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1152(865,)\chi_{1152} (865, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1152, ( :1/2), 0.7570.653i)(2,\ 1152,\ (\ :1/2),\ 0.757 - 0.653i)

Particular Values

L(1)L(1) \approx 1.9540198311.954019831
L(12)L(\frac12) \approx 1.9540198311.954019831
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
good5 1+(1.271.27i)T+5iT2 1 + (-1.27 - 1.27i)T + 5iT^{2}
7 10.158iT7T2 1 - 0.158iT - 7T^{2}
11 1+(3.793.79i)T+11iT2 1 + (-3.79 - 3.79i)T + 11iT^{2}
13 1+(4.21+4.21i)T13iT2 1 + (-4.21 + 4.21i)T - 13iT^{2}
17 1+3.05T+17T2 1 + 3.05T + 17T^{2}
19 1+(2.152.15i)T19iT2 1 + (2.15 - 2.15i)T - 19iT^{2}
23 12.82iT23T2 1 - 2.82iT - 23T^{2}
29 1+(2.09+2.09i)T29iT2 1 + (-2.09 + 2.09i)T - 29iT^{2}
31 1+4.15T+31T2 1 + 4.15T + 31T^{2}
37 1+(5.985.98i)T+37iT2 1 + (-5.98 - 5.98i)T + 37iT^{2}
41 12.60iT41T2 1 - 2.60iT - 41T^{2}
43 1+(5.755.75i)T+43iT2 1 + (-5.75 - 5.75i)T + 43iT^{2}
47 1+2.82T+47T2 1 + 2.82T + 47T^{2}
53 1+(3.553.55i)T+53iT2 1 + (-3.55 - 3.55i)T + 53iT^{2}
59 1+(4+4i)T+59iT2 1 + (4 + 4i)T + 59iT^{2}
61 1+(3.663.66i)T61iT2 1 + (3.66 - 3.66i)T - 61iT^{2}
67 1+(0.767+0.767i)T67iT2 1 + (-0.767 + 0.767i)T - 67iT^{2}
71 10.317iT71T2 1 - 0.317iT - 71T^{2}
73 1+1.33iT73T2 1 + 1.33iT - 73T^{2}
79 19.69T+79T2 1 - 9.69T + 79T^{2}
83 1+(0.1150.115i)T83iT2 1 + (0.115 - 0.115i)T - 83iT^{2}
89 1+14.3iT89T2 1 + 14.3iT - 89T^{2}
97 1+0.571T+97T2 1 + 0.571T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.908061140295156459774469313942, −9.181591890857744269363114246181, −8.273827107360188888101989604245, −7.36263027631526199523235205070, −6.34742267793101433786463625577, −5.98918906986356418278015658041, −4.62712912396091530873137679414, −3.72819861477195252743292953035, −2.54678918931375897201650328347, −1.38580784535627046025192429030, 0.997252152018289728472507164930, 2.14163664663664782010807357065, 3.67880576484288635016962254215, 4.36196111504773499221150372404, 5.60669306153293526584838384314, 6.32604237750801891687825335406, 6.99303375124325256222142254107, 8.399888304026330515510494738994, 9.094699989510457135688956135952, 9.219172782856626451711334234547

Graph of the ZZ-function along the critical line