L(s) = 1 | + (−1 − i)5-s − 2i·7-s + (1 + i)11-s + (1 − i)13-s + 2·17-s + (−3 + 3i)19-s − 6i·23-s − 3i·25-s + (3 − 3i)29-s − 8·31-s + (−2 + 2i)35-s + (−3 − 3i)37-s + (−5 − 5i)43-s − 8·47-s + 3·49-s + ⋯ |
L(s) = 1 | + (−0.447 − 0.447i)5-s − 0.755i·7-s + (0.301 + 0.301i)11-s + (0.277 − 0.277i)13-s + 0.485·17-s + (−0.688 + 0.688i)19-s − 1.25i·23-s − 0.600i·25-s + (0.557 − 0.557i)29-s − 1.43·31-s + (−0.338 + 0.338i)35-s + (−0.493 − 0.493i)37-s + (−0.762 − 0.762i)43-s − 1.16·47-s + 0.428·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.110746320\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.110746320\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (1 + i)T + 5iT^{2} \) |
| 7 | \( 1 + 2iT - 7T^{2} \) |
| 11 | \( 1 + (-1 - i)T + 11iT^{2} \) |
| 13 | \( 1 + (-1 + i)T - 13iT^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 + (3 - 3i)T - 19iT^{2} \) |
| 23 | \( 1 + 6iT - 23T^{2} \) |
| 29 | \( 1 + (-3 + 3i)T - 29iT^{2} \) |
| 31 | \( 1 + 8T + 31T^{2} \) |
| 37 | \( 1 + (3 + 3i)T + 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + (5 + 5i)T + 43iT^{2} \) |
| 47 | \( 1 + 8T + 47T^{2} \) |
| 53 | \( 1 + (5 + 5i)T + 53iT^{2} \) |
| 59 | \( 1 + (3 + 3i)T + 59iT^{2} \) |
| 61 | \( 1 + (-9 + 9i)T - 61iT^{2} \) |
| 67 | \( 1 + (-5 + 5i)T - 67iT^{2} \) |
| 71 | \( 1 - 10iT - 71T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (1 - i)T - 83iT^{2} \) |
| 89 | \( 1 + 4iT - 89T^{2} \) |
| 97 | \( 1 + 2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.629298747100390472692533905486, −8.501326769365921162082958764621, −8.072574652741689627973409719339, −7.04834359754263378467797334364, −6.28931806461978086200000028298, −5.13652814628748907524340912871, −4.22013221147723810564784246677, −3.51049025110595818772439200611, −1.94832630369567704040932942633, −0.48934285697923472429924730022,
1.59797776481250517815219276734, 2.97519874817941570571558015212, 3.74939197839987385516225497709, 4.98912371406221158588357179407, 5.84800656732092485422756521783, 6.77557927853428421546881480517, 7.52996953182904516445246126827, 8.533407369549866103537257842390, 9.126791310395377687011973647860, 10.00419395783294059633937137675