L(s) = 1 | + (1.27 − 1.27i)5-s + 0.158i·7-s + (−3.79 + 3.79i)11-s + (4.21 + 4.21i)13-s − 3.05·17-s + (2.15 + 2.15i)19-s + 2.82i·23-s + 1.76i·25-s + (2.09 + 2.09i)29-s + 4.15·31-s + (0.202 + 0.202i)35-s + (5.98 − 5.98i)37-s − 2.60i·41-s + (−5.75 + 5.75i)43-s + 2.82·47-s + ⋯ |
L(s) = 1 | + (0.568 − 0.568i)5-s + 0.0600i·7-s + (−1.14 + 1.14i)11-s + (1.16 + 1.16i)13-s − 0.740·17-s + (0.495 + 0.495i)19-s + 0.589i·23-s + 0.353i·25-s + (0.389 + 0.389i)29-s + 0.746·31-s + (0.0341 + 0.0341i)35-s + (0.984 − 0.984i)37-s − 0.406i·41-s + (−0.877 + 0.877i)43-s + 0.412·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.653 - 0.757i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.653 - 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.647378672\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.647378672\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1.27 + 1.27i)T - 5iT^{2} \) |
| 7 | \( 1 - 0.158iT - 7T^{2} \) |
| 11 | \( 1 + (3.79 - 3.79i)T - 11iT^{2} \) |
| 13 | \( 1 + (-4.21 - 4.21i)T + 13iT^{2} \) |
| 17 | \( 1 + 3.05T + 17T^{2} \) |
| 19 | \( 1 + (-2.15 - 2.15i)T + 19iT^{2} \) |
| 23 | \( 1 - 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (-2.09 - 2.09i)T + 29iT^{2} \) |
| 31 | \( 1 - 4.15T + 31T^{2} \) |
| 37 | \( 1 + (-5.98 + 5.98i)T - 37iT^{2} \) |
| 41 | \( 1 + 2.60iT - 41T^{2} \) |
| 43 | \( 1 + (5.75 - 5.75i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.82T + 47T^{2} \) |
| 53 | \( 1 + (-3.55 + 3.55i)T - 53iT^{2} \) |
| 59 | \( 1 + (-4 + 4i)T - 59iT^{2} \) |
| 61 | \( 1 + (3.66 + 3.66i)T + 61iT^{2} \) |
| 67 | \( 1 + (0.767 + 0.767i)T + 67iT^{2} \) |
| 71 | \( 1 - 0.317iT - 71T^{2} \) |
| 73 | \( 1 - 1.33iT - 73T^{2} \) |
| 79 | \( 1 + 9.69T + 79T^{2} \) |
| 83 | \( 1 + (-0.115 - 0.115i)T + 83iT^{2} \) |
| 89 | \( 1 - 14.3iT - 89T^{2} \) |
| 97 | \( 1 + 0.571T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.764567490054182329347449977037, −9.190604798765203406435762661394, −8.362363318454017895516478042568, −7.43663857675278653381506038898, −6.55334382286674438643856962267, −5.60122724978862802237608301527, −4.80863875279165426220078198403, −3.88242241308189720045338658096, −2.41424301465507757012953073649, −1.44366313949828988338625345765,
0.76117036173217255813321407855, 2.57725482442369525225877465647, 3.15145762452195230967690103124, 4.51938842313453371905002371158, 5.70702213291210347592855966887, 6.12086004708035417279065233967, 7.16010065806566852756915793738, 8.297936488230250524695889609121, 8.583696456383401055668344073459, 9.929957133334960655631520040875