L(s) = 1 | + (1.74 − 1.74i)5-s − 2.55i·7-s + (−0.473 + 0.473i)11-s + (−2.88 − 2.88i)13-s + 6.44·17-s + (−4.55 − 4.55i)19-s + 2.82i·23-s − 1.11i·25-s + (−3.07 − 3.07i)29-s − 6.55·31-s + (−4.47 − 4.47i)35-s + (2.72 − 2.72i)37-s − 0.788i·41-s + (−0.389 + 0.389i)43-s + 2.82·47-s + ⋯ |
L(s) = 1 | + (0.782 − 0.782i)5-s − 0.966i·7-s + (−0.142 + 0.142i)11-s + (−0.800 − 0.800i)13-s + 1.56·17-s + (−1.04 − 1.04i)19-s + 0.589i·23-s − 0.223i·25-s + (−0.571 − 0.571i)29-s − 1.17·31-s + (−0.756 − 0.756i)35-s + (0.448 − 0.448i)37-s − 0.123i·41-s + (−0.0594 + 0.0594i)43-s + 0.412·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.270 + 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.270 + 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.563546249\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.563546249\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1.74 + 1.74i)T - 5iT^{2} \) |
| 7 | \( 1 + 2.55iT - 7T^{2} \) |
| 11 | \( 1 + (0.473 - 0.473i)T - 11iT^{2} \) |
| 13 | \( 1 + (2.88 + 2.88i)T + 13iT^{2} \) |
| 17 | \( 1 - 6.44T + 17T^{2} \) |
| 19 | \( 1 + (4.55 + 4.55i)T + 19iT^{2} \) |
| 23 | \( 1 - 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (3.07 + 3.07i)T + 29iT^{2} \) |
| 31 | \( 1 + 6.55T + 31T^{2} \) |
| 37 | \( 1 + (-2.72 + 2.72i)T - 37iT^{2} \) |
| 41 | \( 1 + 0.788iT - 41T^{2} \) |
| 43 | \( 1 + (0.389 - 0.389i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.82T + 47T^{2} \) |
| 53 | \( 1 + (2.57 - 2.57i)T - 53iT^{2} \) |
| 59 | \( 1 + (4 - 4i)T - 59iT^{2} \) |
| 61 | \( 1 + (-4.38 - 4.38i)T + 61iT^{2} \) |
| 67 | \( 1 + (2.11 + 2.11i)T + 67iT^{2} \) |
| 71 | \( 1 + 5.11iT - 71T^{2} \) |
| 73 | \( 1 + 14.7iT - 73T^{2} \) |
| 79 | \( 1 - 6.31T + 79T^{2} \) |
| 83 | \( 1 + (0.641 + 0.641i)T + 83iT^{2} \) |
| 89 | \( 1 + 6.31iT - 89T^{2} \) |
| 97 | \( 1 - 12.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.583557671375827403686596846748, −8.913364368184750863627711919794, −7.69881399411613367327467647506, −7.33775073347617649987246167478, −5.99567375963208068137514995350, −5.30530177432609483766559443690, −4.45441943453657652378506441349, −3.29936214220657644191682424474, −1.96202575272733876866440601654, −0.66122273865409941711737548820,
1.84808602599519056854643366927, 2.63473547720514906849262475417, 3.76632042112774429024304748147, 5.13285148510401668670931842649, 5.86862281676980923107279039349, 6.56599645594881563417824716147, 7.53798642857861977466139738655, 8.455074030034117836241508472099, 9.357963048721471087128020585281, 10.00936953458774617023958631075