L(s) = 1 | + (−2.68 + 2.68i)5-s − 2.15i·7-s + (1.79 − 1.79i)11-s + (−1.38 − 1.38i)13-s + 0.224·17-s + (−0.158 − 0.158i)19-s + 2.82i·23-s − 9.42i·25-s + (−1.85 − 1.85i)29-s + 1.84·31-s + (5.79 + 5.79i)35-s + (3.66 − 3.66i)37-s − 5.88i·41-s + (7.75 − 7.75i)43-s + 2.82·47-s + ⋯ |
L(s) = 1 | + (−1.20 + 1.20i)5-s − 0.816i·7-s + (0.542 − 0.542i)11-s + (−0.383 − 0.383i)13-s + 0.0545·17-s + (−0.0364 − 0.0364i)19-s + 0.589i·23-s − 1.88i·25-s + (−0.344 − 0.344i)29-s + 0.330·31-s + (0.980 + 0.980i)35-s + (0.603 − 0.603i)37-s − 0.918i·41-s + (1.18 − 1.18i)43-s + 0.412·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.653 + 0.757i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.653 + 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.067443707\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.067443707\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (2.68 - 2.68i)T - 5iT^{2} \) |
| 7 | \( 1 + 2.15iT - 7T^{2} \) |
| 11 | \( 1 + (-1.79 + 1.79i)T - 11iT^{2} \) |
| 13 | \( 1 + (1.38 + 1.38i)T + 13iT^{2} \) |
| 17 | \( 1 - 0.224T + 17T^{2} \) |
| 19 | \( 1 + (0.158 + 0.158i)T + 19iT^{2} \) |
| 23 | \( 1 - 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (1.85 + 1.85i)T + 29iT^{2} \) |
| 31 | \( 1 - 1.84T + 31T^{2} \) |
| 37 | \( 1 + (-3.66 + 3.66i)T - 37iT^{2} \) |
| 41 | \( 1 + 5.88iT - 41T^{2} \) |
| 43 | \( 1 + (-7.75 + 7.75i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.82T + 47T^{2} \) |
| 53 | \( 1 + (-7.51 + 7.51i)T - 53iT^{2} \) |
| 59 | \( 1 + (-4 + 4i)T - 59iT^{2} \) |
| 61 | \( 1 + (5.98 + 5.98i)T + 61iT^{2} \) |
| 67 | \( 1 + (-10.4 - 10.4i)T + 67iT^{2} \) |
| 71 | \( 1 + 4.31iT - 71T^{2} \) |
| 73 | \( 1 - 5.97iT - 73T^{2} \) |
| 79 | \( 1 - 15.0T + 79T^{2} \) |
| 83 | \( 1 + (10.1 + 10.1i)T + 83iT^{2} \) |
| 89 | \( 1 + 1.42iT - 89T^{2} \) |
| 97 | \( 1 + 16.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.876670429214528349263748253459, −8.760396424208690707655137133938, −7.78313334176697361829413615738, −7.29388375744792035222449067803, −6.59308820580236139171685036918, −5.48433530454556943902813883407, −4.02259350406508291033902256383, −3.69116963238625032193250723708, −2.52470827747262946920910925984, −0.55541557451302667134499855871,
1.14346203360746750950481671300, 2.62055533450604724530897945330, 4.04243083132926585200684888900, 4.58884203238575122857012717922, 5.51424423138371197593413482805, 6.63068423489140521544508372216, 7.63611021909963571576795143418, 8.296665014888312482195553514230, 9.087011131258422296378520969661, 9.570939978232563019117681367493