Properties

Label 2-1152-1.1-c3-0-44
Degree $2$
Conductor $1152$
Sign $-1$
Analytic cond. $67.9702$
Root an. cond. $8.24440$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·5-s − 20·7-s − 14·11-s − 54·13-s + 66·17-s + 162·19-s + 172·23-s − 89·25-s − 2·29-s + 128·31-s − 120·35-s − 158·37-s − 202·41-s − 298·43-s − 408·47-s + 57·49-s − 690·53-s − 84·55-s + 322·59-s + 298·61-s − 324·65-s + 202·67-s − 700·71-s − 418·73-s + 280·77-s − 744·79-s + 678·83-s + ⋯
L(s)  = 1  + 0.536·5-s − 1.07·7-s − 0.383·11-s − 1.15·13-s + 0.941·17-s + 1.95·19-s + 1.55·23-s − 0.711·25-s − 0.0128·29-s + 0.741·31-s − 0.579·35-s − 0.702·37-s − 0.769·41-s − 1.05·43-s − 1.26·47-s + 0.166·49-s − 1.78·53-s − 0.205·55-s + 0.710·59-s + 0.625·61-s − 0.618·65-s + 0.368·67-s − 1.17·71-s − 0.670·73-s + 0.414·77-s − 1.05·79-s + 0.896·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(67.9702\)
Root analytic conductor: \(8.24440\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1152,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 6 T + p^{3} T^{2} \)
7 \( 1 + 20 T + p^{3} T^{2} \)
11 \( 1 + 14 T + p^{3} T^{2} \)
13 \( 1 + 54 T + p^{3} T^{2} \)
17 \( 1 - 66 T + p^{3} T^{2} \)
19 \( 1 - 162 T + p^{3} T^{2} \)
23 \( 1 - 172 T + p^{3} T^{2} \)
29 \( 1 + 2 T + p^{3} T^{2} \)
31 \( 1 - 128 T + p^{3} T^{2} \)
37 \( 1 + 158 T + p^{3} T^{2} \)
41 \( 1 + 202 T + p^{3} T^{2} \)
43 \( 1 + 298 T + p^{3} T^{2} \)
47 \( 1 + 408 T + p^{3} T^{2} \)
53 \( 1 + 690 T + p^{3} T^{2} \)
59 \( 1 - 322 T + p^{3} T^{2} \)
61 \( 1 - 298 T + p^{3} T^{2} \)
67 \( 1 - 202 T + p^{3} T^{2} \)
71 \( 1 + 700 T + p^{3} T^{2} \)
73 \( 1 + 418 T + p^{3} T^{2} \)
79 \( 1 + 744 T + p^{3} T^{2} \)
83 \( 1 - 678 T + p^{3} T^{2} \)
89 \( 1 - 82 T + p^{3} T^{2} \)
97 \( 1 + 1122 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.367819680136505591148583608344, −8.114624921154983130896326857110, −7.26448096331210405248757006681, −6.58226092648848239270279129110, −5.46611035164568730025350378447, −4.97113460198100698672733855639, −3.34625816902438081742851871628, −2.85193507696155299305219449794, −1.37391415515200830909468826826, 0, 1.37391415515200830909468826826, 2.85193507696155299305219449794, 3.34625816902438081742851871628, 4.97113460198100698672733855639, 5.46611035164568730025350378447, 6.58226092648848239270279129110, 7.26448096331210405248757006681, 8.114624921154983130896326857110, 9.367819680136505591148583608344

Graph of the $Z$-function along the critical line