Properties

Label 2-1152-1.1-c1-0-16
Degree $2$
Conductor $1152$
Sign $-1$
Analytic cond. $9.19876$
Root an. cond. $3.03294$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 4·11-s − 6·13-s − 6·17-s + 4·23-s − 5·25-s + 4·29-s − 10·31-s − 2·37-s + 2·41-s + 8·43-s − 12·47-s − 3·49-s − 12·53-s + 4·59-s − 2·61-s + 4·67-s − 4·71-s − 10·73-s − 8·77-s + 6·79-s − 12·83-s − 2·89-s + 12·91-s − 6·97-s + 4·101-s + 10·103-s + ⋯
L(s)  = 1  − 0.755·7-s + 1.20·11-s − 1.66·13-s − 1.45·17-s + 0.834·23-s − 25-s + 0.742·29-s − 1.79·31-s − 0.328·37-s + 0.312·41-s + 1.21·43-s − 1.75·47-s − 3/7·49-s − 1.64·53-s + 0.520·59-s − 0.256·61-s + 0.488·67-s − 0.474·71-s − 1.17·73-s − 0.911·77-s + 0.675·79-s − 1.31·83-s − 0.211·89-s + 1.25·91-s − 0.609·97-s + 0.398·101-s + 0.985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1152\)    =    \(2^{7} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(9.19876\)
Root analytic conductor: \(3.03294\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1152} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1152,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 6 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.392805556443339877432708764972, −8.825925610400178898897528083054, −7.56237844869816331895572212869, −6.86617713649335228477722027286, −6.19174829158795733764599049329, −4.99207876302239290655432150674, −4.14300745369301184814326433789, −3.04605515966584879794132221618, −1.89290593869789230240007927288, 0, 1.89290593869789230240007927288, 3.04605515966584879794132221618, 4.14300745369301184814326433789, 4.99207876302239290655432150674, 6.19174829158795733764599049329, 6.86617713649335228477722027286, 7.56237844869816331895572212869, 8.825925610400178898897528083054, 9.392805556443339877432708764972

Graph of the $Z$-function along the critical line