| L(s) = 1 | − 2·5-s + 2·7-s − 4·11-s − 2·13-s + 4·17-s + 4·19-s − 8·23-s − 25-s − 6·29-s − 6·31-s − 4·35-s + 2·37-s + 12·41-s − 12·43-s − 8·47-s − 3·49-s − 6·53-s + 8·55-s − 8·59-s + 10·61-s + 4·65-s + 8·67-s + 2·73-s − 8·77-s − 14·79-s − 12·83-s − 8·85-s + ⋯ |
| L(s) = 1 | − 0.894·5-s + 0.755·7-s − 1.20·11-s − 0.554·13-s + 0.970·17-s + 0.917·19-s − 1.66·23-s − 1/5·25-s − 1.11·29-s − 1.07·31-s − 0.676·35-s + 0.328·37-s + 1.87·41-s − 1.82·43-s − 1.16·47-s − 3/7·49-s − 0.824·53-s + 1.07·55-s − 1.04·59-s + 1.28·61-s + 0.496·65-s + 0.977·67-s + 0.234·73-s − 0.911·77-s − 1.57·79-s − 1.31·83-s − 0.867·85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 \) | |
| 3 | \( 1 \) | |
| good | 5 | \( 1 + 2 T + p T^{2} \) | 1.5.c |
| 7 | \( 1 - 2 T + p T^{2} \) | 1.7.ac |
| 11 | \( 1 + 4 T + p T^{2} \) | 1.11.e |
| 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c |
| 17 | \( 1 - 4 T + p T^{2} \) | 1.17.ae |
| 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae |
| 23 | \( 1 + 8 T + p T^{2} \) | 1.23.i |
| 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g |
| 31 | \( 1 + 6 T + p T^{2} \) | 1.31.g |
| 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac |
| 41 | \( 1 - 12 T + p T^{2} \) | 1.41.am |
| 43 | \( 1 + 12 T + p T^{2} \) | 1.43.m |
| 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i |
| 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g |
| 59 | \( 1 + 8 T + p T^{2} \) | 1.59.i |
| 61 | \( 1 - 10 T + p T^{2} \) | 1.61.ak |
| 67 | \( 1 - 8 T + p T^{2} \) | 1.67.ai |
| 71 | \( 1 + p T^{2} \) | 1.71.a |
| 73 | \( 1 - 2 T + p T^{2} \) | 1.73.ac |
| 79 | \( 1 + 14 T + p T^{2} \) | 1.79.o |
| 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m |
| 89 | \( 1 + 8 T + p T^{2} \) | 1.89.i |
| 97 | \( 1 + 2 T + p T^{2} \) | 1.97.c |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.558735670988353764915784446879, −8.134170655131032203344015591991, −7.896386203283316223193723499883, −7.24475273898824768170284757363, −5.77487918508415576155763844750, −5.12825968660873124392937561875, −4.11127877062436067080642370065, −3.13724073110772517310555660565, −1.82243002848641170832748081144, 0,
1.82243002848641170832748081144, 3.13724073110772517310555660565, 4.11127877062436067080642370065, 5.12825968660873124392937561875, 5.77487918508415576155763844750, 7.24475273898824768170284757363, 7.896386203283316223193723499883, 8.134170655131032203344015591991, 9.558735670988353764915784446879