L(s) = 1 | − 2i·2-s + 10.1i·3-s − 4·4-s + 20.2·6-s + 24.6i·7-s + 8i·8-s − 75.5·9-s − 17.3·11-s − 40.5i·12-s + 4.00i·13-s + 49.2·14-s + 16·16-s − 48.2i·17-s + 151. i·18-s − 79.3·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.94i·3-s − 0.5·4-s + 1.37·6-s + 1.33i·7-s + 0.353i·8-s − 2.79·9-s − 0.476·11-s − 0.974i·12-s + 0.0854i·13-s + 0.940·14-s + 0.250·16-s − 0.688i·17-s + 1.97i·18-s − 0.957·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.1921102874\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1921102874\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2iT \) |
| 5 | \( 1 \) |
| 23 | \( 1 + 23iT \) |
good | 3 | \( 1 - 10.1iT - 27T^{2} \) |
| 7 | \( 1 - 24.6iT - 343T^{2} \) |
| 11 | \( 1 + 17.3T + 1.33e3T^{2} \) |
| 13 | \( 1 - 4.00iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 48.2iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 79.3T + 6.85e3T^{2} \) |
| 29 | \( 1 - 254.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 220.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 422. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 170.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 228. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 580. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 260. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 353.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 80.6T + 2.26e5T^{2} \) |
| 67 | \( 1 - 820. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 614.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 511. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 160.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 32.5iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 25.0T + 7.04e5T^{2} \) |
| 97 | \( 1 - 249. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.413392164320556991058220245003, −8.682808998156499167900641994455, −8.341440865638600252971662694745, −6.44366018912813131174526223851, −5.30738968611444071522452618295, −5.00534256251555779231360678314, −3.96861167659493540577962425607, −3.00911281892576539223792016648, −2.32341866345266707873891956109, −0.05613313390177717212234510882,
0.878206225962369372861895647440, 1.92895323824161830021227030763, 3.24643849852143620491621538596, 4.52158078583373452408434339192, 5.78761560710125910177857116706, 6.42103289589688050041964026473, 7.15669307280296858392198757587, 7.73786016585773788984918676524, 8.272768498564680459012897514655, 9.216449971680407050017996191417