Properties

Label 2-1150-5.4-c3-0-54
Degree $2$
Conductor $1150$
Sign $0.447 + 0.894i$
Analytic cond. $67.8521$
Root an. cond. $8.23724$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·2-s + i·3-s − 4·4-s + 2·6-s + 18i·7-s + 8i·8-s + 26·9-s − 32·11-s − 4i·12-s − 47i·13-s + 36·14-s + 16·16-s − 20i·17-s − 52i·18-s − 36·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.192i·3-s − 0.5·4-s + 0.136·6-s + 0.971i·7-s + 0.353i·8-s + 0.962·9-s − 0.877·11-s − 0.0962i·12-s − 1.00i·13-s + 0.687·14-s + 0.250·16-s − 0.285i·17-s − 0.680i·18-s − 0.434·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1150\)    =    \(2 \cdot 5^{2} \cdot 23\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(67.8521\)
Root analytic conductor: \(8.23724\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1150} (599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1150,\ (\ :3/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.754656450\)
\(L(\frac12)\) \(\approx\) \(1.754656450\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2iT \)
5 \( 1 \)
23 \( 1 + 23iT \)
good3 \( 1 - iT - 27T^{2} \)
7 \( 1 - 18iT - 343T^{2} \)
11 \( 1 + 32T + 1.33e3T^{2} \)
13 \( 1 + 47iT - 2.19e3T^{2} \)
17 \( 1 + 20iT - 4.91e3T^{2} \)
19 \( 1 + 36T + 6.85e3T^{2} \)
29 \( 1 - 27T + 2.43e4T^{2} \)
31 \( 1 + 33T + 2.97e4T^{2} \)
37 \( 1 + 56iT - 5.06e4T^{2} \)
41 \( 1 + 157T + 6.89e4T^{2} \)
43 \( 1 - 18iT - 7.95e4T^{2} \)
47 \( 1 + 65iT - 1.03e5T^{2} \)
53 \( 1 + 14iT - 1.48e5T^{2} \)
59 \( 1 - 744T + 2.05e5T^{2} \)
61 \( 1 - 552T + 2.26e5T^{2} \)
67 \( 1 - 156iT - 3.00e5T^{2} \)
71 \( 1 - 699T + 3.57e5T^{2} \)
73 \( 1 + 609iT - 3.89e5T^{2} \)
79 \( 1 - 644T + 4.93e5T^{2} \)
83 \( 1 - 512iT - 5.71e5T^{2} \)
89 \( 1 - 102T + 7.04e5T^{2} \)
97 \( 1 + 578iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.453268268429156239021701226952, −8.546120481622535361352528206214, −7.86789926941610879084074293664, −6.79279338172748989328886110233, −5.56384174029250106696254186452, −5.01239495065470418242703921624, −3.89754864107416668987693964554, −2.83914000070068142134147479566, −2.00473943284263327042443923987, −0.57110409237879660682512388797, 0.827849945342552178613483849407, 2.07391936084045200963661703409, 3.70700424576106211360027109790, 4.40771840936118259395765769420, 5.30070672834448934746670885091, 6.52553877139369898041758517807, 7.02980907065425941997839378711, 7.76759934325251520322990066354, 8.545185064752985026744878051610, 9.611623315354084441004582073718

Graph of the $Z$-function along the critical line