L(s) = 1 | − 2i·2-s − 9i·3-s − 4·4-s − 18·6-s − 2i·7-s + 8i·8-s − 54·9-s − 52·11-s + 36i·12-s + 43i·13-s − 4·14-s + 16·16-s + 50i·17-s + 108i·18-s + 74·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.73i·3-s − 0.5·4-s − 1.22·6-s − 0.107i·7-s + 0.353i·8-s − 2·9-s − 1.42·11-s + 0.866i·12-s + 0.917i·13-s − 0.0763·14-s + 0.250·16-s + 0.713i·17-s + 1.41i·18-s + 0.893·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.038582585\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.038582585\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2iT \) |
| 5 | \( 1 \) |
| 23 | \( 1 + 23iT \) |
good | 3 | \( 1 + 9iT - 27T^{2} \) |
| 7 | \( 1 + 2iT - 343T^{2} \) |
| 11 | \( 1 + 52T + 1.33e3T^{2} \) |
| 13 | \( 1 - 43iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 50iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 74T + 6.85e3T^{2} \) |
| 29 | \( 1 - 7T + 2.43e4T^{2} \) |
| 31 | \( 1 + 273T + 2.97e4T^{2} \) |
| 37 | \( 1 - 4iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 123T + 6.89e4T^{2} \) |
| 43 | \( 1 + 152iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 75iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 86iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 444T + 2.05e5T^{2} \) |
| 61 | \( 1 - 262T + 2.26e5T^{2} \) |
| 67 | \( 1 + 764iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 21T + 3.57e5T^{2} \) |
| 73 | \( 1 - 681iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 426T + 4.93e5T^{2} \) |
| 83 | \( 1 - 902iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.27e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 342iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.156984753341019375458775190956, −8.353528440656486040837856379412, −7.59760117920956592063247197639, −6.99922095826349339610864908480, −5.91373870955692657670933847242, −5.15297251598224370797736254319, −3.71667334128060051893992150879, −2.53607321707441363466837332527, −1.87876833797541328977978690906, −0.78647153348708345755902956366,
0.33747226371362323416906897709, 2.73352320717575627650882667549, 3.51965193678172208993078727150, 4.59332813310046927712435113627, 5.42621783193972220427317116713, 5.63634894794154389426969570032, 7.25995950827715653244129532516, 7.978535356172127998203238028521, 8.874975414108071128362886110818, 9.570083636384678338223015620150