Properties

Label 2-1150-5.4-c3-0-22
Degree $2$
Conductor $1150$
Sign $0.447 + 0.894i$
Analytic cond. $67.8521$
Root an. cond. $8.23724$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2i·2-s − 9i·3-s − 4·4-s − 18·6-s − 2i·7-s + 8i·8-s − 54·9-s − 52·11-s + 36i·12-s + 43i·13-s − 4·14-s + 16·16-s + 50i·17-s + 108i·18-s + 74·19-s + ⋯
L(s)  = 1  − 0.707i·2-s − 1.73i·3-s − 0.5·4-s − 1.22·6-s − 0.107i·7-s + 0.353i·8-s − 2·9-s − 1.42·11-s + 0.866i·12-s + 0.917i·13-s − 0.0763·14-s + 0.250·16-s + 0.713i·17-s + 1.41i·18-s + 0.893·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1150\)    =    \(2 \cdot 5^{2} \cdot 23\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(67.8521\)
Root analytic conductor: \(8.23724\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1150} (599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1150,\ (\ :3/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.038582585\)
\(L(\frac12)\) \(\approx\) \(1.038582585\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2iT \)
5 \( 1 \)
23 \( 1 + 23iT \)
good3 \( 1 + 9iT - 27T^{2} \)
7 \( 1 + 2iT - 343T^{2} \)
11 \( 1 + 52T + 1.33e3T^{2} \)
13 \( 1 - 43iT - 2.19e3T^{2} \)
17 \( 1 - 50iT - 4.91e3T^{2} \)
19 \( 1 - 74T + 6.85e3T^{2} \)
29 \( 1 - 7T + 2.43e4T^{2} \)
31 \( 1 + 273T + 2.97e4T^{2} \)
37 \( 1 - 4iT - 5.06e4T^{2} \)
41 \( 1 - 123T + 6.89e4T^{2} \)
43 \( 1 + 152iT - 7.95e4T^{2} \)
47 \( 1 + 75iT - 1.03e5T^{2} \)
53 \( 1 - 86iT - 1.48e5T^{2} \)
59 \( 1 - 444T + 2.05e5T^{2} \)
61 \( 1 - 262T + 2.26e5T^{2} \)
67 \( 1 + 764iT - 3.00e5T^{2} \)
71 \( 1 + 21T + 3.57e5T^{2} \)
73 \( 1 - 681iT - 3.89e5T^{2} \)
79 \( 1 + 426T + 4.93e5T^{2} \)
83 \( 1 - 902iT - 5.71e5T^{2} \)
89 \( 1 - 1.27e3T + 7.04e5T^{2} \)
97 \( 1 - 342iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.156984753341019375458775190956, −8.353528440656486040837856379412, −7.59760117920956592063247197639, −6.99922095826349339610864908480, −5.91373870955692657670933847242, −5.15297251598224370797736254319, −3.71667334128060051893992150879, −2.53607321707441363466837332527, −1.87876833797541328977978690906, −0.78647153348708345755902956366, 0.33747226371362323416906897709, 2.73352320717575627650882667549, 3.51965193678172208993078727150, 4.59332813310046927712435113627, 5.42621783193972220427317116713, 5.63634894794154389426969570032, 7.25995950827715653244129532516, 7.978535356172127998203238028521, 8.874975414108071128362886110818, 9.570083636384678338223015620150

Graph of the $Z$-function along the critical line