L(s) = 1 | − i·2-s − 3i·3-s − 4-s − 3·6-s + 4i·7-s + i·8-s − 6·9-s + 3·11-s + 3i·12-s + 6i·13-s + 4·14-s + 16-s + 5i·17-s + 6i·18-s + 19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.73i·3-s − 0.5·4-s − 1.22·6-s + 1.51i·7-s + 0.353i·8-s − 2·9-s + 0.904·11-s + 0.866i·12-s + 1.66i·13-s + 1.06·14-s + 0.250·16-s + 1.21i·17-s + 1.41i·18-s + 0.229·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.267419455\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.267419455\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + 3iT - 3T^{2} \) |
| 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 - 3T + 11T^{2} \) |
| 13 | \( 1 - 6iT - 13T^{2} \) |
| 17 | \( 1 - 5iT - 17T^{2} \) |
| 19 | \( 1 - T + 19T^{2} \) |
| 29 | \( 1 - 8T + 29T^{2} \) |
| 31 | \( 1 + 8T + 31T^{2} \) |
| 37 | \( 1 - 2iT - 37T^{2} \) |
| 41 | \( 1 + 7T + 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 - 10iT - 47T^{2} \) |
| 53 | \( 1 - 12iT - 53T^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + 8T + 61T^{2} \) |
| 67 | \( 1 - 3iT - 67T^{2} \) |
| 71 | \( 1 - 4T + 71T^{2} \) |
| 73 | \( 1 - 7iT - 73T^{2} \) |
| 79 | \( 1 - 6T + 79T^{2} \) |
| 83 | \( 1 + 11iT - 83T^{2} \) |
| 89 | \( 1 - 3T + 89T^{2} \) |
| 97 | \( 1 + 14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.459272191888040332779141888420, −8.816594488343647122622406583828, −8.344126003375559148522213436135, −7.17302662787870385898224850780, −6.34645237528279951584791845762, −5.82556245053230439488920449592, −4.46008936653674228997610331290, −3.08057667986912756346616320090, −2.00294530278641836463803709687, −1.49255824363746871990693286365,
0.58219191301645104474559719717, 3.28054521456622117441021853685, 3.76157656209591941522380516018, 4.81131111597909614745574856745, 5.28124174604698433513304956546, 6.50045397096991209106428489389, 7.41868141999146634942015666670, 8.270307300308170402023661450228, 9.201702570472120669913231847259, 9.875686855997859995133915973413