L(s) = 1 | − 2·2-s + 0.534·3-s + 4·4-s − 1.06·6-s + 28.9·7-s − 8·8-s − 26.7·9-s + 33.5·11-s + 2.13·12-s − 10.2·13-s − 57.8·14-s + 16·16-s − 56.5·17-s + 53.4·18-s − 5.26·19-s + 15.4·21-s − 67.0·22-s − 23·23-s − 4.27·24-s + 20.5·26-s − 28.7·27-s + 115.·28-s − 162.·29-s − 160.·31-s − 32·32-s + 17.9·33-s + 113.·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.102·3-s + 0.5·4-s − 0.0727·6-s + 1.56·7-s − 0.353·8-s − 0.989·9-s + 0.918·11-s + 0.0514·12-s − 0.219·13-s − 1.10·14-s + 0.250·16-s − 0.807·17-s + 0.699·18-s − 0.0635·19-s + 0.160·21-s − 0.649·22-s − 0.208·23-s − 0.0363·24-s + 0.155·26-s − 0.204·27-s + 0.781·28-s − 1.03·29-s − 0.930·31-s − 0.176·32-s + 0.0945·33-s + 0.570·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2T \) |
| 5 | \( 1 \) |
| 23 | \( 1 + 23T \) |
good | 3 | \( 1 - 0.534T + 27T^{2} \) |
| 7 | \( 1 - 28.9T + 343T^{2} \) |
| 11 | \( 1 - 33.5T + 1.33e3T^{2} \) |
| 13 | \( 1 + 10.2T + 2.19e3T^{2} \) |
| 17 | \( 1 + 56.5T + 4.91e3T^{2} \) |
| 19 | \( 1 + 5.26T + 6.85e3T^{2} \) |
| 29 | \( 1 + 162.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 160.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 16.9T + 5.06e4T^{2} \) |
| 41 | \( 1 - 22.7T + 6.89e4T^{2} \) |
| 43 | \( 1 + 333.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 130.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 673.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 291.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 454.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 132.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 121.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 176.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 563.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 809.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 702.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 342.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.878192074430378630499519188429, −8.327700106319330864052862986069, −7.58707531114232559228833481455, −6.64905981156635027228985959095, −5.64895342968117731870482481246, −4.75205908310516560545933744095, −3.61807976075444855809004764366, −2.25055615071134716387833664082, −1.46854659375956602906049376366, 0,
1.46854659375956602906049376366, 2.25055615071134716387833664082, 3.61807976075444855809004764366, 4.75205908310516560545933744095, 5.64895342968117731870482481246, 6.64905981156635027228985959095, 7.58707531114232559228833481455, 8.327700106319330864052862986069, 8.878192074430378630499519188429