Properties

Label 2-1150-1.1-c3-0-71
Degree $2$
Conductor $1150$
Sign $-1$
Analytic cond. $67.8521$
Root an. cond. $8.23724$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2.88·3-s + 4·4-s − 5.77·6-s + 8.21·7-s − 8·8-s − 18.6·9-s − 71.5·11-s + 11.5·12-s + 66.1·13-s − 16.4·14-s + 16·16-s + 27.7·17-s + 37.3·18-s + 13.7·19-s + 23.7·21-s + 143.·22-s − 23·23-s − 23.1·24-s − 132.·26-s − 131.·27-s + 32.8·28-s + 274.·29-s + 265.·31-s − 32·32-s − 206.·33-s − 55.5·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.555·3-s + 0.5·4-s − 0.393·6-s + 0.443·7-s − 0.353·8-s − 0.690·9-s − 1.96·11-s + 0.277·12-s + 1.41·13-s − 0.313·14-s + 0.250·16-s + 0.396·17-s + 0.488·18-s + 0.166·19-s + 0.246·21-s + 1.38·22-s − 0.208·23-s − 0.196·24-s − 0.997·26-s − 0.940·27-s + 0.221·28-s + 1.75·29-s + 1.54·31-s − 0.176·32-s − 1.09·33-s − 0.280·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1150\)    =    \(2 \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(67.8521\)
Root analytic conductor: \(8.23724\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1150,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
5 \( 1 \)
23 \( 1 + 23T \)
good3 \( 1 - 2.88T + 27T^{2} \)
7 \( 1 - 8.21T + 343T^{2} \)
11 \( 1 + 71.5T + 1.33e3T^{2} \)
13 \( 1 - 66.1T + 2.19e3T^{2} \)
17 \( 1 - 27.7T + 4.91e3T^{2} \)
19 \( 1 - 13.7T + 6.85e3T^{2} \)
29 \( 1 - 274.T + 2.43e4T^{2} \)
31 \( 1 - 265.T + 2.97e4T^{2} \)
37 \( 1 + 204.T + 5.06e4T^{2} \)
41 \( 1 + 69.5T + 6.89e4T^{2} \)
43 \( 1 + 187.T + 7.95e4T^{2} \)
47 \( 1 + 135.T + 1.03e5T^{2} \)
53 \( 1 + 502.T + 1.48e5T^{2} \)
59 \( 1 + 161.T + 2.05e5T^{2} \)
61 \( 1 + 103.T + 2.26e5T^{2} \)
67 \( 1 - 985.T + 3.00e5T^{2} \)
71 \( 1 + 817.T + 3.57e5T^{2} \)
73 \( 1 + 1.11e3T + 3.89e5T^{2} \)
79 \( 1 - 400.T + 4.93e5T^{2} \)
83 \( 1 + 1.11e3T + 5.71e5T^{2} \)
89 \( 1 + 485.T + 7.04e5T^{2} \)
97 \( 1 - 1.03e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.694814688736567584109261570230, −8.226066652543623833213359930016, −7.86054134261430531530322840543, −6.58763599220616435988894194136, −5.69132484267379798196828534892, −4.77971792801442340956411962363, −3.25337416053709837774527295623, −2.64850916121615149725246579389, −1.37483762505121123588513898934, 0, 1.37483762505121123588513898934, 2.64850916121615149725246579389, 3.25337416053709837774527295623, 4.77971792801442340956411962363, 5.69132484267379798196828534892, 6.58763599220616435988894194136, 7.86054134261430531530322840543, 8.226066652543623833213359930016, 8.694814688736567584109261570230

Graph of the $Z$-function along the critical line