Properties

Label 2-1150-1.1-c3-0-51
Degree $2$
Conductor $1150$
Sign $1$
Analytic cond. $67.8521$
Root an. cond. $8.23724$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 10.0·3-s + 4·4-s − 20.1·6-s + 0.670·7-s − 8·8-s + 74.0·9-s − 15.7·11-s + 40.2·12-s + 50.2·13-s − 1.34·14-s + 16·16-s + 43.0·17-s − 148.·18-s + 86.7·19-s + 6.73·21-s + 31.4·22-s − 23·23-s − 80.4·24-s − 100.·26-s + 473.·27-s + 2.68·28-s + 147.·29-s − 121.·31-s − 32·32-s − 157.·33-s − 86.1·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.93·3-s + 0.5·4-s − 1.36·6-s + 0.0361·7-s − 0.353·8-s + 2.74·9-s − 0.430·11-s + 0.967·12-s + 1.07·13-s − 0.0255·14-s + 0.250·16-s + 0.614·17-s − 1.93·18-s + 1.04·19-s + 0.0700·21-s + 0.304·22-s − 0.208·23-s − 0.684·24-s − 0.758·26-s + 3.37·27-s + 0.0180·28-s + 0.941·29-s − 0.702·31-s − 0.176·32-s − 0.833·33-s − 0.434·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1150\)    =    \(2 \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(67.8521\)
Root analytic conductor: \(8.23724\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1150,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.754611437\)
\(L(\frac12)\) \(\approx\) \(3.754611437\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
5 \( 1 \)
23 \( 1 + 23T \)
good3 \( 1 - 10.0T + 27T^{2} \)
7 \( 1 - 0.670T + 343T^{2} \)
11 \( 1 + 15.7T + 1.33e3T^{2} \)
13 \( 1 - 50.2T + 2.19e3T^{2} \)
17 \( 1 - 43.0T + 4.91e3T^{2} \)
19 \( 1 - 86.7T + 6.85e3T^{2} \)
29 \( 1 - 147.T + 2.43e4T^{2} \)
31 \( 1 + 121.T + 2.97e4T^{2} \)
37 \( 1 + 241.T + 5.06e4T^{2} \)
41 \( 1 - 232.T + 6.89e4T^{2} \)
43 \( 1 + 302.T + 7.95e4T^{2} \)
47 \( 1 + 252.T + 1.03e5T^{2} \)
53 \( 1 - 58.0T + 1.48e5T^{2} \)
59 \( 1 + 375.T + 2.05e5T^{2} \)
61 \( 1 - 353.T + 2.26e5T^{2} \)
67 \( 1 - 750.T + 3.00e5T^{2} \)
71 \( 1 - 29.4T + 3.57e5T^{2} \)
73 \( 1 - 80.5T + 3.89e5T^{2} \)
79 \( 1 + 607.T + 4.93e5T^{2} \)
83 \( 1 - 1.23e3T + 5.71e5T^{2} \)
89 \( 1 - 903.T + 7.04e5T^{2} \)
97 \( 1 - 1.13e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.292609418732479150018436473094, −8.550755747648764237970653553064, −8.011150810699143959153205853568, −7.37377737977104503172954326955, −6.43580847295372532944340458860, −5.01933729878958059436704696450, −3.64775196567623296293702466059, −3.13977889568755128130200501785, −2.02164885320718285635429006802, −1.10481531739259597429201642943, 1.10481531739259597429201642943, 2.02164885320718285635429006802, 3.13977889568755128130200501785, 3.64775196567623296293702466059, 5.01933729878958059436704696450, 6.43580847295372532944340458860, 7.37377737977104503172954326955, 8.011150810699143959153205853568, 8.550755747648764237970653553064, 9.292609418732479150018436473094

Graph of the $Z$-function along the critical line