Properties

Label 2-1150-1.1-c3-0-46
Degree $2$
Conductor $1150$
Sign $-1$
Analytic cond. $67.8521$
Root an. cond. $8.23724$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2·3-s + 4·4-s + 4·6-s − 21·7-s − 8·8-s − 23·9-s + 47·11-s − 8·12-s − 57·13-s + 42·14-s + 16·16-s + 84·17-s + 46·18-s − 5·19-s + 42·21-s − 94·22-s − 23·23-s + 16·24-s + 114·26-s + 100·27-s − 84·28-s + 285·29-s + 82·31-s − 32·32-s − 94·33-s − 168·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.384·3-s + 1/2·4-s + 0.272·6-s − 1.13·7-s − 0.353·8-s − 0.851·9-s + 1.28·11-s − 0.192·12-s − 1.21·13-s + 0.801·14-s + 1/4·16-s + 1.19·17-s + 0.602·18-s − 0.0603·19-s + 0.436·21-s − 0.910·22-s − 0.208·23-s + 0.136·24-s + 0.859·26-s + 0.712·27-s − 0.566·28-s + 1.82·29-s + 0.475·31-s − 0.176·32-s − 0.495·33-s − 0.847·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1150\)    =    \(2 \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(67.8521\)
Root analytic conductor: \(8.23724\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1150,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
5 \( 1 \)
23 \( 1 + p T \)
good3 \( 1 + 2 T + p^{3} T^{2} \)
7 \( 1 + 3 p T + p^{3} T^{2} \)
11 \( 1 - 47 T + p^{3} T^{2} \)
13 \( 1 + 57 T + p^{3} T^{2} \)
17 \( 1 - 84 T + p^{3} T^{2} \)
19 \( 1 + 5 T + p^{3} T^{2} \)
29 \( 1 - 285 T + p^{3} T^{2} \)
31 \( 1 - 82 T + p^{3} T^{2} \)
37 \( 1 - 54 T + p^{3} T^{2} \)
41 \( 1 + 53 T + p^{3} T^{2} \)
43 \( 1 + 197 T + p^{3} T^{2} \)
47 \( 1 - 124 T + p^{3} T^{2} \)
53 \( 1 - 148 T + p^{3} T^{2} \)
59 \( 1 - 30 T + p^{3} T^{2} \)
61 \( 1 + 578 T + p^{3} T^{2} \)
67 \( 1 + 296 T + p^{3} T^{2} \)
71 \( 1 - 422 T + p^{3} T^{2} \)
73 \( 1 + 487 T + p^{3} T^{2} \)
79 \( 1 + 405 T + p^{3} T^{2} \)
83 \( 1 + 397 T + p^{3} T^{2} \)
89 \( 1 - 730 T + p^{3} T^{2} \)
97 \( 1 - 64 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.109701747319716660547024268323, −8.326908031894459659842895401909, −7.30186824685254416048561404802, −6.49036960445616779888171956341, −5.94397549809074339291102568156, −4.77336812364551196704007455815, −3.41971153013429439621171924927, −2.63165863094868126011073891523, −1.07327104076809931027681407775, 0, 1.07327104076809931027681407775, 2.63165863094868126011073891523, 3.41971153013429439621171924927, 4.77336812364551196704007455815, 5.94397549809074339291102568156, 6.49036960445616779888171956341, 7.30186824685254416048561404802, 8.326908031894459659842895401909, 9.109701747319716660547024268323

Graph of the $Z$-function along the critical line