L(s) = 1 | − 2·2-s − 7.21·3-s + 4·4-s + 14.4·6-s − 19.8·7-s − 8·8-s + 24.9·9-s − 31.0·11-s − 28.8·12-s − 7.15·13-s + 39.7·14-s + 16·16-s − 40.8·17-s − 49.9·18-s + 144.·19-s + 143.·21-s + 62.1·22-s − 23·23-s + 57.6·24-s + 14.3·26-s + 14.5·27-s − 79.5·28-s − 189.·29-s + 41.6·31-s − 32·32-s + 223.·33-s + 81.6·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.38·3-s + 0.5·4-s + 0.981·6-s − 1.07·7-s − 0.353·8-s + 0.925·9-s − 0.851·11-s − 0.693·12-s − 0.152·13-s + 0.759·14-s + 0.250·16-s − 0.582·17-s − 0.654·18-s + 1.75·19-s + 1.49·21-s + 0.601·22-s − 0.208·23-s + 0.490·24-s + 0.107·26-s + 0.103·27-s − 0.536·28-s − 1.21·29-s + 0.241·31-s − 0.176·32-s + 1.18·33-s + 0.411·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2T \) |
| 5 | \( 1 \) |
| 23 | \( 1 + 23T \) |
good | 3 | \( 1 + 7.21T + 27T^{2} \) |
| 7 | \( 1 + 19.8T + 343T^{2} \) |
| 11 | \( 1 + 31.0T + 1.33e3T^{2} \) |
| 13 | \( 1 + 7.15T + 2.19e3T^{2} \) |
| 17 | \( 1 + 40.8T + 4.91e3T^{2} \) |
| 19 | \( 1 - 144.T + 6.85e3T^{2} \) |
| 29 | \( 1 + 189.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 41.6T + 2.97e4T^{2} \) |
| 37 | \( 1 + 37.3T + 5.06e4T^{2} \) |
| 41 | \( 1 - 401.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 29.2T + 7.95e4T^{2} \) |
| 47 | \( 1 + 18.0T + 1.03e5T^{2} \) |
| 53 | \( 1 + 214.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 313.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 452.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 858.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 451.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 742.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 126.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 473.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 109.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 711.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.399239003541165653568241695522, −8.086651929859547862158140401915, −7.23031986925523198346072642248, −6.52665444639823349196602919972, −5.69593185255461908120525158961, −5.06596647400835798946257132387, −3.61419051461859676882284269341, −2.45662840276622133926522859965, −0.866414233603579876252090267433, 0,
0.866414233603579876252090267433, 2.45662840276622133926522859965, 3.61419051461859676882284269341, 5.06596647400835798946257132387, 5.69593185255461908120525158961, 6.52665444639823349196602919972, 7.23031986925523198346072642248, 8.086651929859547862158140401915, 9.399239003541165653568241695522