Properties

Label 2-1150-1.1-c3-0-34
Degree $2$
Conductor $1150$
Sign $-1$
Analytic cond. $67.8521$
Root an. cond. $8.23724$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 7.21·3-s + 4·4-s + 14.4·6-s − 19.8·7-s − 8·8-s + 24.9·9-s − 31.0·11-s − 28.8·12-s − 7.15·13-s + 39.7·14-s + 16·16-s − 40.8·17-s − 49.9·18-s + 144.·19-s + 143.·21-s + 62.1·22-s − 23·23-s + 57.6·24-s + 14.3·26-s + 14.5·27-s − 79.5·28-s − 189.·29-s + 41.6·31-s − 32·32-s + 223.·33-s + 81.6·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.38·3-s + 0.5·4-s + 0.981·6-s − 1.07·7-s − 0.353·8-s + 0.925·9-s − 0.851·11-s − 0.693·12-s − 0.152·13-s + 0.759·14-s + 0.250·16-s − 0.582·17-s − 0.654·18-s + 1.75·19-s + 1.49·21-s + 0.601·22-s − 0.208·23-s + 0.490·24-s + 0.107·26-s + 0.103·27-s − 0.536·28-s − 1.21·29-s + 0.241·31-s − 0.176·32-s + 1.18·33-s + 0.411·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1150\)    =    \(2 \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(67.8521\)
Root analytic conductor: \(8.23724\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1150,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
5 \( 1 \)
23 \( 1 + 23T \)
good3 \( 1 + 7.21T + 27T^{2} \)
7 \( 1 + 19.8T + 343T^{2} \)
11 \( 1 + 31.0T + 1.33e3T^{2} \)
13 \( 1 + 7.15T + 2.19e3T^{2} \)
17 \( 1 + 40.8T + 4.91e3T^{2} \)
19 \( 1 - 144.T + 6.85e3T^{2} \)
29 \( 1 + 189.T + 2.43e4T^{2} \)
31 \( 1 - 41.6T + 2.97e4T^{2} \)
37 \( 1 + 37.3T + 5.06e4T^{2} \)
41 \( 1 - 401.T + 6.89e4T^{2} \)
43 \( 1 + 29.2T + 7.95e4T^{2} \)
47 \( 1 + 18.0T + 1.03e5T^{2} \)
53 \( 1 + 214.T + 1.48e5T^{2} \)
59 \( 1 - 313.T + 2.05e5T^{2} \)
61 \( 1 - 452.T + 2.26e5T^{2} \)
67 \( 1 - 858.T + 3.00e5T^{2} \)
71 \( 1 - 451.T + 3.57e5T^{2} \)
73 \( 1 - 742.T + 3.89e5T^{2} \)
79 \( 1 - 126.T + 4.93e5T^{2} \)
83 \( 1 - 473.T + 5.71e5T^{2} \)
89 \( 1 + 109.T + 7.04e5T^{2} \)
97 \( 1 - 711.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.399239003541165653568241695522, −8.086651929859547862158140401915, −7.23031986925523198346072642248, −6.52665444639823349196602919972, −5.69593185255461908120525158961, −5.06596647400835798946257132387, −3.61419051461859676882284269341, −2.45662840276622133926522859965, −0.866414233603579876252090267433, 0, 0.866414233603579876252090267433, 2.45662840276622133926522859965, 3.61419051461859676882284269341, 5.06596647400835798946257132387, 5.69593185255461908120525158961, 6.52665444639823349196602919972, 7.23031986925523198346072642248, 8.086651929859547862158140401915, 9.399239003541165653568241695522

Graph of the $Z$-function along the critical line