Properties

Label 2-1150-1.1-c1-0-5
Degree $2$
Conductor $1150$
Sign $1$
Analytic cond. $9.18279$
Root an. cond. $3.03031$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 1.79·3-s + 4-s − 1.79·6-s − 2.79·7-s + 8-s + 0.208·9-s + 3.79·11-s − 1.79·12-s − 1.20·13-s − 2.79·14-s + 16-s + 3.79·17-s + 0.208·18-s + 1.20·19-s + 5·21-s + 3.79·22-s − 23-s − 1.79·24-s − 1.20·26-s + 5.00·27-s − 2.79·28-s − 1.58·29-s + 10.3·31-s + 32-s − 6.79·33-s + 3.79·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.03·3-s + 0.5·4-s − 0.731·6-s − 1.05·7-s + 0.353·8-s + 0.0695·9-s + 1.14·11-s − 0.517·12-s − 0.335·13-s − 0.746·14-s + 0.250·16-s + 0.919·17-s + 0.0491·18-s + 0.277·19-s + 1.09·21-s + 0.808·22-s − 0.208·23-s − 0.365·24-s − 0.237·26-s + 0.962·27-s − 0.527·28-s − 0.293·29-s + 1.86·31-s + 0.176·32-s − 1.18·33-s + 0.650·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1150\)    =    \(2 \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(9.18279\)
Root analytic conductor: \(3.03031\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1150} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1150,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.612769031\)
\(L(\frac12)\) \(\approx\) \(1.612769031\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 1.79T + 3T^{2} \)
7 \( 1 + 2.79T + 7T^{2} \)
11 \( 1 - 3.79T + 11T^{2} \)
13 \( 1 + 1.20T + 13T^{2} \)
17 \( 1 - 3.79T + 17T^{2} \)
19 \( 1 - 1.20T + 19T^{2} \)
29 \( 1 + 1.58T + 29T^{2} \)
31 \( 1 - 10.3T + 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 + 2.20T + 41T^{2} \)
43 \( 1 - 7.16T + 43T^{2} \)
47 \( 1 - 13.5T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 4.41T + 59T^{2} \)
61 \( 1 + 3.37T + 61T^{2} \)
67 \( 1 - 7.16T + 67T^{2} \)
71 \( 1 + 5.37T + 71T^{2} \)
73 \( 1 - 14.7T + 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 + 3.16T + 89T^{2} \)
97 \( 1 + 14.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.901638178568965617970020386986, −9.235552577769392690316669871255, −7.957169036281539429774128180976, −6.89794079317323013227175124374, −6.26098428855000817717282304546, −5.71552343620791958133274735820, −4.69270388701496293375701357770, −3.71896873462567333673682235845, −2.72054382036392625050348153692, −0.926352951191884097594504054965, 0.926352951191884097594504054965, 2.72054382036392625050348153692, 3.71896873462567333673682235845, 4.69270388701496293375701357770, 5.71552343620791958133274735820, 6.26098428855000817717282304546, 6.89794079317323013227175124374, 7.957169036281539429774128180976, 9.235552577769392690316669871255, 9.901638178568965617970020386986

Graph of the $Z$-function along the critical line