Properties

Label 2-1150-1.1-c1-0-17
Degree $2$
Conductor $1150$
Sign $1$
Analytic cond. $9.18279$
Root an. cond. $3.03031$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3·3-s + 4-s − 3·6-s + 4·7-s − 8-s + 6·9-s + 3·11-s + 3·12-s − 6·13-s − 4·14-s + 16-s + 5·17-s − 6·18-s − 19-s + 12·21-s − 3·22-s + 23-s − 3·24-s + 6·26-s + 9·27-s + 4·28-s − 8·29-s − 8·31-s − 32-s + 9·33-s − 5·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.73·3-s + 1/2·4-s − 1.22·6-s + 1.51·7-s − 0.353·8-s + 2·9-s + 0.904·11-s + 0.866·12-s − 1.66·13-s − 1.06·14-s + 1/4·16-s + 1.21·17-s − 1.41·18-s − 0.229·19-s + 2.61·21-s − 0.639·22-s + 0.208·23-s − 0.612·24-s + 1.17·26-s + 1.73·27-s + 0.755·28-s − 1.48·29-s − 1.43·31-s − 0.176·32-s + 1.56·33-s − 0.857·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1150\)    =    \(2 \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(9.18279\)
Root analytic conductor: \(3.03031\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1150,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.562205493\)
\(L(\frac12)\) \(\approx\) \(2.562205493\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 + T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 7 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 - 3 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 - 11 T + p T^{2} \)
89 \( 1 + 3 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.418697221621826698091322517723, −9.085426534280127450003684766543, −8.117541525349201165845174784319, −7.59474610161940484578941715279, −7.12956679221094430486867721686, −5.46616785894646380813647164423, −4.38590550697342217753796693067, −3.37416141049219083022255530454, −2.20877669468819065006590445959, −1.52598777083604923783702801600, 1.52598777083604923783702801600, 2.20877669468819065006590445959, 3.37416141049219083022255530454, 4.38590550697342217753796693067, 5.46616785894646380813647164423, 7.12956679221094430486867721686, 7.59474610161940484578941715279, 8.117541525349201165845174784319, 9.085426534280127450003684766543, 9.418697221621826698091322517723

Graph of the $Z$-function along the critical line