# Properties

 Label 2-1148-1148.975-c0-0-1 Degree $2$ Conductor $1148$ Sign $0.489 + 0.872i$ Analytic cond. $0.572926$ Root an. cond. $0.756919$ Motivic weight $0$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−0.866 − 0.5i)2-s + (0.258 − 0.965i)3-s + (0.499 + 0.866i)4-s + (0.866 + 0.5i)5-s + (−0.707 + 0.707i)6-s + (0.965 − 0.258i)7-s − 0.999i·8-s + (−0.499 − 0.866i)10-s + (0.258 − 0.965i)11-s + (0.965 − 0.258i)12-s + (−1 + i)13-s + (−0.965 − 0.258i)14-s + (0.707 − 0.707i)15-s + (−0.5 + 0.866i)16-s + (0.258 + 0.965i)19-s + 0.999i·20-s + ⋯
 L(s)  = 1 + (−0.866 − 0.5i)2-s + (0.258 − 0.965i)3-s + (0.499 + 0.866i)4-s + (0.866 + 0.5i)5-s + (−0.707 + 0.707i)6-s + (0.965 − 0.258i)7-s − 0.999i·8-s + (−0.499 − 0.866i)10-s + (0.258 − 0.965i)11-s + (0.965 − 0.258i)12-s + (−1 + i)13-s + (−0.965 − 0.258i)14-s + (0.707 − 0.707i)15-s + (−0.5 + 0.866i)16-s + (0.258 + 0.965i)19-s + 0.999i·20-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 1148 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.489 + 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 1148 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.489 + 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$1148$$    =    $$2^{2} \cdot 7 \cdot 41$$ Sign: $0.489 + 0.872i$ Analytic conductor: $$0.572926$$ Root analytic conductor: $$0.756919$$ Motivic weight: $$0$$ Rational: no Arithmetic: yes Character: $\chi_{1148} (975, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 1148,\ (\ :0),\ 0.489 + 0.872i)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$0.9886706586$$ $$L(\frac12)$$ $$\approx$$ $$0.9886706586$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (0.866 + 0.5i)T$$
7 $$1 + (-0.965 + 0.258i)T$$
41 $$1 - iT$$
good3 $$1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2}$$
5 $$1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2}$$
11 $$1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2}$$
13 $$1 + (1 - i)T - iT^{2}$$
17 $$1 + (-0.866 - 0.5i)T^{2}$$
19 $$1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2}$$
23 $$1 + (0.5 + 0.866i)T^{2}$$
29 $$1 - iT^{2}$$
31 $$1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2}$$
37 $$1 + (-0.5 - 0.866i)T^{2}$$
43 $$1 + T^{2}$$
47 $$1 + (-0.866 + 0.5i)T^{2}$$
53 $$1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2}$$
59 $$1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2}$$
61 $$1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2}$$
67 $$1 + (1.93 + 0.517i)T + (0.866 + 0.5i)T^{2}$$
71 $$1 + (0.707 + 0.707i)T + iT^{2}$$
73 $$1 + (0.5 - 0.866i)T^{2}$$
79 $$1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2}$$
83 $$1 + 1.41iT - T^{2}$$
89 $$1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2}$$
97 $$1 + iT^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$