Properties

Label 2-114-57.2-c1-0-1
Degree $2$
Conductor $114$
Sign $0.827 - 0.561i$
Analytic cond. $0.910294$
Root an. cond. $0.954093$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.173 + 0.984i)2-s + (1.53 − 0.797i)3-s + (−0.939 − 0.342i)4-s + (0.258 + 0.710i)5-s + (0.517 + 1.65i)6-s + (0.777 + 1.34i)7-s + (0.5 − 0.866i)8-s + (1.72 − 2.45i)9-s + (−0.744 + 0.131i)10-s + (−0.832 − 0.480i)11-s + (−1.71 + 0.222i)12-s + (0.416 + 0.496i)13-s + (−1.46 + 0.532i)14-s + (0.963 + 0.886i)15-s + (0.766 + 0.642i)16-s + (−6.73 − 1.18i)17-s + ⋯
L(s)  = 1  + (−0.122 + 0.696i)2-s + (0.887 − 0.460i)3-s + (−0.469 − 0.171i)4-s + (0.115 + 0.317i)5-s + (0.211 + 0.674i)6-s + (0.294 + 0.509i)7-s + (0.176 − 0.306i)8-s + (0.576 − 0.817i)9-s + (−0.235 + 0.0415i)10-s + (−0.250 − 0.144i)11-s + (−0.495 + 0.0643i)12-s + (0.115 + 0.137i)13-s + (−0.390 + 0.142i)14-s + (0.248 + 0.228i)15-s + (0.191 + 0.160i)16-s + (−1.63 − 0.287i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 - 0.561i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 - 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(114\)    =    \(2 \cdot 3 \cdot 19\)
Sign: $0.827 - 0.561i$
Analytic conductor: \(0.910294\)
Root analytic conductor: \(0.954093\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{114} (59, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 114,\ (\ :1/2),\ 0.827 - 0.561i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.16437 + 0.357668i\)
\(L(\frac12)\) \(\approx\) \(1.16437 + 0.357668i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.173 - 0.984i)T \)
3 \( 1 + (-1.53 + 0.797i)T \)
19 \( 1 + (4.14 - 1.35i)T \)
good5 \( 1 + (-0.258 - 0.710i)T + (-3.83 + 3.21i)T^{2} \)
7 \( 1 + (-0.777 - 1.34i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (0.832 + 0.480i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.416 - 0.496i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (6.73 + 1.18i)T + (15.9 + 5.81i)T^{2} \)
23 \( 1 + (0.400 - 1.10i)T + (-17.6 - 14.7i)T^{2} \)
29 \( 1 + (1.39 + 7.92i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (2.63 - 1.52i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 - 4.12iT - 37T^{2} \)
41 \( 1 + (-4.09 - 3.43i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (7.34 - 2.67i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-3.11 + 0.548i)T + (44.1 - 16.0i)T^{2} \)
53 \( 1 + (-13.6 - 4.96i)T + (40.6 + 34.0i)T^{2} \)
59 \( 1 + (2.02 - 11.4i)T + (-55.4 - 20.1i)T^{2} \)
61 \( 1 + (-10.1 - 3.70i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (9.19 - 1.62i)T + (62.9 - 22.9i)T^{2} \)
71 \( 1 + (0.0322 - 0.0117i)T + (54.3 - 45.6i)T^{2} \)
73 \( 1 + (3.04 + 2.55i)T + (12.6 + 71.8i)T^{2} \)
79 \( 1 + (0.893 - 1.06i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-10.4 + 6.05i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (4.68 - 3.92i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (-9.54 - 1.68i)T + (91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71113819160744651827718434956, −13.09017590544745954744973744585, −11.74174975085028860158521199398, −10.30909203884712172871035158265, −8.993632711437307518788746881846, −8.349260455289232811803781732608, −7.11266483986869173538188889105, −6.10948056958198425160789828870, −4.31648620652381081902753913095, −2.38956251176692016356981997063, 2.15103675785412170099445699019, 3.84499743968368701021912315939, 4.93367921925874954131623824208, 7.12265668720309719967157819412, 8.520626612634324272868290105546, 9.125833463492725328150807344063, 10.48505837675190878083447427140, 11.03275780645542203818752664051, 12.76886808034049224538876905992, 13.30305171998286117274556670944

Graph of the $Z$-function along the critical line