Properties

Label 2-114-57.14-c1-0-5
Degree $2$
Conductor $114$
Sign $0.852 + 0.522i$
Analytic cond. $0.910294$
Root an. cond. $0.954093$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.939 − 0.342i)2-s + (1.26 − 1.18i)3-s + (0.766 − 0.642i)4-s + (−1.86 + 2.21i)5-s + (0.779 − 1.54i)6-s + (0.562 + 0.973i)7-s + (0.500 − 0.866i)8-s + (0.184 − 2.99i)9-s + (−0.990 + 2.72i)10-s + (−2.70 − 1.56i)11-s + (0.203 − 1.71i)12-s + (−5.18 + 0.914i)13-s + (0.861 + 0.722i)14-s + (0.283 + 5.01i)15-s + (0.173 − 0.984i)16-s + (0.880 + 2.41i)17-s + ⋯
L(s)  = 1  + (0.664 − 0.241i)2-s + (0.728 − 0.685i)3-s + (0.383 − 0.321i)4-s + (−0.832 + 0.992i)5-s + (0.318 − 0.631i)6-s + (0.212 + 0.367i)7-s + (0.176 − 0.306i)8-s + (0.0614 − 0.998i)9-s + (−0.313 + 0.860i)10-s + (−0.816 − 0.471i)11-s + (0.0588 − 0.496i)12-s + (−1.43 + 0.253i)13-s + (0.230 + 0.193i)14-s + (0.0731 + 1.29i)15-s + (0.0434 − 0.246i)16-s + (0.213 + 0.586i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.852 + 0.522i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.852 + 0.522i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(114\)    =    \(2 \cdot 3 \cdot 19\)
Sign: $0.852 + 0.522i$
Analytic conductor: \(0.910294\)
Root analytic conductor: \(0.954093\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{114} (71, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 114,\ (\ :1/2),\ 0.852 + 0.522i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.49937 - 0.422423i\)
\(L(\frac12)\) \(\approx\) \(1.49937 - 0.422423i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.939 + 0.342i)T \)
3 \( 1 + (-1.26 + 1.18i)T \)
19 \( 1 + (-4.13 + 1.37i)T \)
good5 \( 1 + (1.86 - 2.21i)T + (-0.868 - 4.92i)T^{2} \)
7 \( 1 + (-0.562 - 0.973i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (2.70 + 1.56i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + (5.18 - 0.914i)T + (12.2 - 4.44i)T^{2} \)
17 \( 1 + (-0.880 - 2.41i)T + (-13.0 + 10.9i)T^{2} \)
23 \( 1 + (-4.31 - 5.14i)T + (-3.99 + 22.6i)T^{2} \)
29 \( 1 + (-1.09 - 0.399i)T + (22.2 + 18.6i)T^{2} \)
31 \( 1 + (3.90 - 2.25i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + 12.0iT - 37T^{2} \)
41 \( 1 + (-1.06 + 6.02i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (-2.21 - 1.85i)T + (7.46 + 42.3i)T^{2} \)
47 \( 1 + (0.377 - 1.03i)T + (-36.0 - 30.2i)T^{2} \)
53 \( 1 + (-5.66 + 4.75i)T + (9.20 - 52.1i)T^{2} \)
59 \( 1 + (6.41 - 2.33i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (5.58 - 4.68i)T + (10.5 - 60.0i)T^{2} \)
67 \( 1 + (2.42 - 6.64i)T + (-51.3 - 43.0i)T^{2} \)
71 \( 1 + (3.31 + 2.77i)T + (12.3 + 69.9i)T^{2} \)
73 \( 1 + (1.30 - 7.41i)T + (-68.5 - 24.9i)T^{2} \)
79 \( 1 + (-4.30 - 0.759i)T + (74.2 + 27.0i)T^{2} \)
83 \( 1 + (-12.5 + 7.22i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (-2.38 - 13.5i)T + (-83.6 + 30.4i)T^{2} \)
97 \( 1 + (1.47 + 4.04i)T + (-74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.55325290301485014343464609412, −12.47508636012342895280108532769, −11.67293472169130634079366014014, −10.63653257133874261862829851941, −9.184858741823135933705169121097, −7.61417069080938147889822805626, −7.15508180426884196857886015328, −5.45482936014313682332027293784, −3.57108468686376618423034821157, −2.51966503937493159395211261028, 2.92918833894696729200818734994, 4.57637462203554667867049529431, 5.01397500355329962870533518418, 7.43741444401760267841097736770, 8.024833909264870499831168241116, 9.369925541179830929114753678714, 10.50177851568076508910687438052, 11.89291890628580048810331166263, 12.73551792262923741130553809195, 13.75846453081384701797213992170

Graph of the $Z$-function along the critical line