Properties

Label 2-114-19.17-c3-0-9
Degree $2$
Conductor $114$
Sign $-0.342 + 0.939i$
Analytic cond. $6.72621$
Root an. cond. $2.59349$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.347 − 1.96i)2-s + (2.29 + 1.92i)3-s + (−3.75 − 1.36i)4-s + (3.13 − 1.14i)5-s + (4.59 − 3.85i)6-s + (−16.8 − 29.1i)7-s + (−4 + 6.92i)8-s + (1.56 + 8.86i)9-s + (−1.15 − 6.57i)10-s + (12.2 − 21.1i)11-s + (−6 − 10.3i)12-s + (47.4 − 39.8i)13-s + (−63.2 + 23.0i)14-s + (9.40 + 3.42i)15-s + (12.2 + 10.2i)16-s + (20.2 − 114. i)17-s + ⋯
L(s)  = 1  + (0.122 − 0.696i)2-s + (0.442 + 0.371i)3-s + (−0.469 − 0.171i)4-s + (0.280 − 0.102i)5-s + (0.312 − 0.262i)6-s + (−0.908 − 1.57i)7-s + (−0.176 + 0.306i)8-s + (0.0578 + 0.328i)9-s + (−0.0366 − 0.207i)10-s + (0.335 − 0.580i)11-s + (−0.144 − 0.249i)12-s + (1.01 − 0.849i)13-s + (−1.20 + 0.439i)14-s + (0.161 + 0.0589i)15-s + (0.191 + 0.160i)16-s + (0.288 − 1.63i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.342 + 0.939i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(114\)    =    \(2 \cdot 3 \cdot 19\)
Sign: $-0.342 + 0.939i$
Analytic conductor: \(6.72621\)
Root analytic conductor: \(2.59349\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{114} (55, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 114,\ (\ :3/2),\ -0.342 + 0.939i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.962475 - 1.37501i\)
\(L(\frac12)\) \(\approx\) \(0.962475 - 1.37501i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.347 + 1.96i)T \)
3 \( 1 + (-2.29 - 1.92i)T \)
19 \( 1 + (-1.28 - 82.8i)T \)
good5 \( 1 + (-3.13 + 1.14i)T + (95.7 - 80.3i)T^{2} \)
7 \( 1 + (16.8 + 29.1i)T + (-171.5 + 297. i)T^{2} \)
11 \( 1 + (-12.2 + 21.1i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (-47.4 + 39.8i)T + (381. - 2.16e3i)T^{2} \)
17 \( 1 + (-20.2 + 114. i)T + (-4.61e3 - 1.68e3i)T^{2} \)
23 \( 1 + (104. + 38.1i)T + (9.32e3 + 7.82e3i)T^{2} \)
29 \( 1 + (-18.8 - 107. i)T + (-2.29e4 + 8.34e3i)T^{2} \)
31 \( 1 + (-72.5 - 125. i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 - 134.T + 5.06e4T^{2} \)
41 \( 1 + (-54.5 - 45.7i)T + (1.19e4 + 6.78e4i)T^{2} \)
43 \( 1 + (-232. + 84.5i)T + (6.09e4 - 5.11e4i)T^{2} \)
47 \( 1 + (73.5 + 417. i)T + (-9.75e4 + 3.55e4i)T^{2} \)
53 \( 1 + (-547. - 199. i)T + (1.14e5 + 9.56e4i)T^{2} \)
59 \( 1 + (28.6 - 162. i)T + (-1.92e5 - 7.02e4i)T^{2} \)
61 \( 1 + (-650. - 236. i)T + (1.73e5 + 1.45e5i)T^{2} \)
67 \( 1 + (-179. - 1.01e3i)T + (-2.82e5 + 1.02e5i)T^{2} \)
71 \( 1 + (509. - 185. i)T + (2.74e5 - 2.30e5i)T^{2} \)
73 \( 1 + (511. + 429. i)T + (6.75e4 + 3.83e5i)T^{2} \)
79 \( 1 + (180. + 151. i)T + (8.56e4 + 4.85e5i)T^{2} \)
83 \( 1 + (320. + 554. i)T + (-2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 + (-840. + 705. i)T + (1.22e5 - 6.94e5i)T^{2} \)
97 \( 1 + (144. - 821. i)T + (-8.57e5 - 3.12e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.07053010535984366895849625087, −11.65399633707325160781412903497, −10.39762625565406144924189675180, −9.966219812451737430541344814641, −8.710644074670936059062002307855, −7.34643638511031632042450513110, −5.78721069911158041776730328257, −4.04006666494112969779423197394, −3.18390221172902736230423299725, −0.877245660074129718237863029423, 2.22718965673757040396347731520, 3.96223011050627359986193817609, 5.98423507164346667669806484261, 6.41128737549228752316358939141, 8.062575360414279826421500834586, 9.019275493295324511314868308982, 9.793989317492436974740735093323, 11.67587808890239618614709353065, 12.63758172499407833497920649345, 13.42878678180843215899403705537

Graph of the $Z$-function along the critical line