Properties

Label 2-114-19.16-c1-0-3
Degree $2$
Conductor $114$
Sign $0.500 + 0.865i$
Analytic cond. $0.910294$
Root an. cond. $0.954093$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.766 − 0.642i)2-s + (0.939 − 0.342i)3-s + (0.173 + 0.984i)4-s + (0.386 − 2.19i)5-s + (−0.939 − 0.342i)6-s + (0.326 + 0.565i)7-s + (0.500 − 0.866i)8-s + (0.766 − 0.642i)9-s + (−1.70 + 1.43i)10-s + (0.766 − 1.32i)11-s + (0.499 + 0.866i)12-s + (0.439 + 0.160i)13-s + (0.113 − 0.642i)14-s + (−0.386 − 2.19i)15-s + (−0.939 + 0.342i)16-s + (−1.61 − 1.35i)17-s + ⋯
L(s)  = 1  + (−0.541 − 0.454i)2-s + (0.542 − 0.197i)3-s + (0.0868 + 0.492i)4-s + (0.172 − 0.980i)5-s + (−0.383 − 0.139i)6-s + (0.123 + 0.213i)7-s + (0.176 − 0.306i)8-s + (0.255 − 0.214i)9-s + (−0.539 + 0.452i)10-s + (0.230 − 0.400i)11-s + (0.144 + 0.250i)12-s + (0.121 + 0.0443i)13-s + (0.0302 − 0.171i)14-s + (−0.0998 − 0.566i)15-s + (−0.234 + 0.0855i)16-s + (−0.391 − 0.328i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.500 + 0.865i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.500 + 0.865i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(114\)    =    \(2 \cdot 3 \cdot 19\)
Sign: $0.500 + 0.865i$
Analytic conductor: \(0.910294\)
Root analytic conductor: \(0.954093\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{114} (73, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 114,\ (\ :1/2),\ 0.500 + 0.865i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.847582 - 0.488983i\)
\(L(\frac12)\) \(\approx\) \(0.847582 - 0.488983i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.766 + 0.642i)T \)
3 \( 1 + (-0.939 + 0.342i)T \)
19 \( 1 + (2.23 - 3.74i)T \)
good5 \( 1 + (-0.386 + 2.19i)T + (-4.69 - 1.71i)T^{2} \)
7 \( 1 + (-0.326 - 0.565i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-0.766 + 1.32i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-0.439 - 0.160i)T + (9.95 + 8.35i)T^{2} \)
17 \( 1 + (1.61 + 1.35i)T + (2.95 + 16.7i)T^{2} \)
23 \( 1 + (-1.02 - 5.81i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (6.38 - 5.35i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-4.31 - 7.48i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 4.67T + 37T^{2} \)
41 \( 1 + (3.26 - 1.18i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (-1.78 + 10.1i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (3.55 - 2.98i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 + (2.07 + 11.7i)T + (-49.8 + 18.1i)T^{2} \)
59 \( 1 + (-10.9 - 9.14i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (1.58 + 8.98i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-0.190 + 0.160i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (0.772 - 4.38i)T + (-66.7 - 24.2i)T^{2} \)
73 \( 1 + (-8.54 + 3.10i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (11.3 - 4.12i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (1.85 + 3.21i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (15.7 + 5.73i)T + (68.1 + 57.2i)T^{2} \)
97 \( 1 + (-1.89 - 1.58i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22673979144617759829149129863, −12.42371971246208890371917827382, −11.39776259370537352342896271806, −10.07721204178323785431801535419, −8.926775194570996470817810122272, −8.453420369961900975038998033556, −7.02887408707105239057327372450, −5.27375097732845350294000050430, −3.56868407894679130114210868349, −1.64200822936618385186842858496, 2.47989876183043574185938126294, 4.36028722621144727898319685301, 6.25259008286742400940574054806, 7.19677649520715541997633418116, 8.354825801656017323594847456615, 9.487682231286897692625489882255, 10.46278388897708711792008334841, 11.30782229304229200177102418214, 12.98930770664270173886092574096, 14.04808887801591542324945659769

Graph of the $Z$-function along the critical line