L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (1.5 + 2.59i)5-s + (−0.5 + 0.866i)7-s − 0.999·8-s + 3·10-s + (−1.5 + 2.59i)11-s + (2 + 3.46i)13-s + (0.499 + 0.866i)14-s + (−0.5 + 0.866i)16-s − 6·17-s − 7·19-s + (1.50 − 2.59i)20-s + (1.5 + 2.59i)22-s + (1.5 + 2.59i)23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.670 + 1.16i)5-s + (−0.188 + 0.327i)7-s − 0.353·8-s + 0.948·10-s + (−0.452 + 0.783i)11-s + (0.554 + 0.960i)13-s + (0.133 + 0.231i)14-s + (−0.125 + 0.216i)16-s − 1.45·17-s − 1.60·19-s + (0.335 − 0.580i)20-s + (0.319 + 0.553i)22-s + (0.312 + 0.541i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.457470188\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.457470188\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-1.5 - 2.59i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2 - 3.46i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 6T + 17T^{2} \) |
| 19 | \( 1 + 7T + 19T^{2} \) |
| 23 | \( 1 + (-1.5 - 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.5 + 4.33i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 7T + 37T^{2} \) |
| 41 | \( 1 + (-4.5 - 7.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5 + 8.66i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3 - 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 12T + 53T^{2} \) |
| 59 | \( 1 + (-3 - 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9T + 71T^{2} \) |
| 73 | \( 1 - 2T + 73T^{2} \) |
| 79 | \( 1 + (-5 + 8.66i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 15T + 89T^{2} \) |
| 97 | \( 1 + (4 - 6.92i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21573703022119596023887242263, −9.294385969806531741035839376069, −8.682706816228100642796548089709, −7.23127755651231028803050604544, −6.54074369264001809800659256991, −5.89162690390824851179670978584, −4.64501113420199188984415023813, −3.79421652203593157403378953867, −2.42810963841338972513826963496, −2.05164060815842562480150541531,
0.52708159331006191865992390190, 2.21237225023772979770243576229, 3.61397700878471967169425439184, 4.62988275667730495171662040456, 5.39013433183998221583354016951, 6.16837736391229946838681691161, 6.94665877024398364258631591236, 8.299611877144388942130204100971, 8.580036781848298818569007847199, 9.339331760542930896811336916456