L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.5 − 0.866i)7-s − 0.999·8-s + 0.999·10-s + (1 − 1.73i)11-s + (−1.5 − 2.59i)13-s + (−0.499 − 0.866i)14-s + (−0.5 + 0.866i)16-s + 17-s + 2·19-s + (0.499 − 0.866i)20-s + (−0.999 − 1.73i)22-s + (1 + 1.73i)23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.223 + 0.387i)5-s + (0.188 − 0.327i)7-s − 0.353·8-s + 0.316·10-s + (0.301 − 0.522i)11-s + (−0.416 − 0.720i)13-s + (−0.133 − 0.231i)14-s + (−0.125 + 0.216i)16-s + 0.242·17-s + 0.458·19-s + (0.111 − 0.193i)20-s + (−0.213 − 0.369i)22-s + (0.208 + 0.361i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.903159763\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.903159763\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 + (-0.5 - 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.5 + 2.59i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + (-1 - 1.73i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.5 + 6.06i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3 + 5.19i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 7T + 37T^{2} \) |
| 41 | \( 1 + (-3 - 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (-5 - 8.66i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.5 + 7.79i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5 + 8.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 4T + 71T^{2} \) |
| 73 | \( 1 + 11T + 73T^{2} \) |
| 79 | \( 1 + (-3 + 5.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5 - 8.66i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 15T + 89T^{2} \) |
| 97 | \( 1 + (-1 + 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.891276605657681297051646313462, −8.892779965060065374146509305820, −7.966366491845029999554553336174, −7.06122623739023385344683633553, −6.03713124097115526623001182144, −5.28420150971968308719983300573, −4.19942461464256383474112257531, −3.25466925627715361937013405711, −2.29161131267906432441879891888, −0.794205433141935869470282525048,
1.52555650207311047170545100730, 2.92427982104566816492156765746, 4.15088848117274565417116831695, 5.03412561882234343657160946940, 5.65252103462601336191879523824, 6.90914957514134103574809424616, 7.24782868106683910884718979818, 8.553063722587105000292773192718, 9.002205689416305844392476375662, 9.849925585394424269974296993712