L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−2 + 3.46i)5-s + (0.5 + 0.866i)7-s + 0.999·8-s + 3.99·10-s + (2 + 3.46i)11-s + (−1.5 + 2.59i)13-s + (0.499 − 0.866i)14-s + (−0.5 − 0.866i)16-s − 7·17-s + 2·19-s + (−1.99 − 3.46i)20-s + (1.99 − 3.46i)22-s + (0.5 − 0.866i)23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.894 + 1.54i)5-s + (0.188 + 0.327i)7-s + 0.353·8-s + 1.26·10-s + (0.603 + 1.04i)11-s + (−0.416 + 0.720i)13-s + (0.133 − 0.231i)14-s + (−0.125 − 0.216i)16-s − 1.69·17-s + 0.458·19-s + (−0.447 − 0.774i)20-s + (0.426 − 0.738i)22-s + (0.104 − 0.180i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4860952950\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4860952950\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (2 - 3.46i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2 - 3.46i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.5 - 2.59i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 7T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.5 + 7.79i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (3 - 5.19i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.5 + 9.52i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 - 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (-2.5 + 4.33i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3 - 5.19i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 - 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7T + 71T^{2} \) |
| 73 | \( 1 + 14T + 73T^{2} \) |
| 79 | \( 1 + (-3 - 5.19i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2 - 3.46i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 3T + 89T^{2} \) |
| 97 | \( 1 + (-4 - 6.92i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19800382182761284500871905154, −9.537154856141914626924019034323, −8.623395974887380269057849262056, −7.62560578139108787484362907704, −6.98737956701071295475766882623, −6.34275230819685207099896925689, −4.57813493017129180577693320497, −4.01643135865326696771623267185, −2.79161018573645939939805550299, −2.03530330506933544544284006759,
0.25340362835138770231659021176, 1.34615706998305570310593181944, 3.37378943935730196956077133266, 4.50873365552984938092675615328, 5.01379203689473519987847193449, 6.09717354140860251297452775739, 7.12475123692516587405018486480, 7.971331166667962069064275378578, 8.686338940163168085993602952564, 8.983328446436336103223658547695