L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−2.62 − 0.358i)7-s + 0.999·8-s + (−2.12 + 3.67i)11-s + 6.24·13-s + (1 + 2.44i)14-s + (−0.5 − 0.866i)16-s + (−3.12 − 5.40i)19-s + 4.24·22-s + (−3.62 − 6.27i)23-s + (2.5 − 4.33i)25-s + (−3.12 − 5.40i)26-s + (1.62 − 2.09i)28-s − 4.24·29-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.990 − 0.135i)7-s + 0.353·8-s + (−0.639 + 1.10i)11-s + 1.73·13-s + (0.267 + 0.654i)14-s + (−0.125 − 0.216i)16-s + (−0.716 − 1.24i)19-s + 0.904·22-s + (−0.755 − 1.30i)23-s + (0.5 − 0.866i)25-s + (−0.612 − 1.06i)26-s + (0.306 − 0.395i)28-s − 0.787·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5138241127\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5138241127\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.62 + 0.358i)T \) |
good | 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.12 - 3.67i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 6.24T + 13T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.12 + 5.40i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.62 + 6.27i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.24T + 29T^{2} \) |
| 31 | \( 1 + (0.378 - 0.655i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2 - 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 5.48T + 41T^{2} \) |
| 43 | \( 1 + 6.48T + 43T^{2} \) |
| 47 | \( 1 + (6.62 + 11.4i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.12 - 3.67i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.12 + 5.40i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.12 + 7.13i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 7.24T + 71T^{2} \) |
| 73 | \( 1 + (-3.5 + 6.06i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.62 + 8.00i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7.75T + 83T^{2} \) |
| 89 | \( 1 + (-2.74 - 4.75i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 12.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.541685449325345586678445427283, −8.709666729674321370401619686685, −8.070080435458487062084064605203, −6.80718423710511291996804024902, −6.35778261817163863332274959546, −4.92544106224331987487947099075, −4.01216089199578239137811993596, −3.01401528721515711702608633035, −1.94504933193175269348730085057, −0.25554154876626425051116562597,
1.46691246463502151763816491415, 3.24303472018210787681044175020, 3.89175939020385398928351116114, 5.59843955587482128614009909544, 5.90498297820400869521403364448, 6.75133963205791592699768043907, 7.894053059068820159539042447724, 8.450564974829485971779462288442, 9.258901571630048397328030424347, 10.04698964503498242691543957628