L(s) = 1 | − 2-s + 4-s + (1.5 + 2.59i)5-s + (−0.5 + 2.59i)7-s − 8-s + (−1.5 − 2.59i)10-s + (2 − 3.46i)13-s + (0.5 − 2.59i)14-s + 16-s + (3 + 5.19i)17-s + (2 − 3.46i)19-s + (1.5 + 2.59i)20-s + (3 + 5.19i)23-s + (−2 + 3.46i)25-s + (−2 + 3.46i)26-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + (0.670 + 1.16i)5-s + (−0.188 + 0.981i)7-s − 0.353·8-s + (−0.474 − 0.821i)10-s + (0.554 − 0.960i)13-s + (0.133 − 0.694i)14-s + 0.250·16-s + (0.727 + 1.26i)17-s + (0.458 − 0.794i)19-s + (0.335 + 0.580i)20-s + (0.625 + 1.08i)23-s + (−0.400 + 0.692i)25-s + (−0.392 + 0.679i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0477 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0477 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.295622440\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.295622440\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 - 2.59i)T \) |
good | 5 | \( 1 + (-1.5 - 2.59i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2 + 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2 + 3.46i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 + 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8T + 31T^{2} \) |
| 37 | \( 1 + (4 - 6.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3 - 5.19i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4 + 6.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 + (-4.5 - 7.79i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 3T + 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + 10T + 67T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + (-3.5 - 6.06i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 17T + 79T^{2} \) |
| 83 | \( 1 + (6 + 10.3i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5 - 8.66i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14956331170890471153454533301, −9.280973068077343621633766763669, −8.424082234198822255006942348559, −7.67224223603255596966376839082, −6.58581498595970786976203595444, −6.05661535867833975740730199557, −5.22965819784247440777917897026, −3.32945796171510404594180785747, −2.79093233604965698282726990498, −1.51170455996311713644398502063,
0.77593272133235155404951997776, 1.69472685761918745251955579675, 3.24282323564344471485772370994, 4.48179559245567463677681177920, 5.31972660538423526136429841017, 6.41991919044478154507317534546, 7.16444692084898744562597660190, 8.124997421604800971702105607134, 8.909845541773668939683782046187, 9.563879823023061226078177454463