L(s) = 1 | + 2-s + 4-s + (−0.5 − 0.866i)5-s + (−2.5 + 0.866i)7-s + 8-s + (−0.5 − 0.866i)10-s + (−2.5 + 4.33i)11-s + (−2.5 + 0.866i)14-s + 16-s + (2 + 3.46i)17-s + (−4 + 6.92i)19-s + (−0.5 − 0.866i)20-s + (−2.5 + 4.33i)22-s + (2 + 3.46i)23-s + (2 − 3.46i)25-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + (−0.223 − 0.387i)5-s + (−0.944 + 0.327i)7-s + 0.353·8-s + (−0.158 − 0.273i)10-s + (−0.753 + 1.30i)11-s + (−0.668 + 0.231i)14-s + 0.250·16-s + (0.485 + 0.840i)17-s + (−0.917 + 1.58i)19-s + (−0.111 − 0.193i)20-s + (−0.533 + 0.923i)22-s + (0.417 + 0.722i)23-s + (0.400 − 0.692i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0477 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0477 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.612144843\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.612144843\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.5 - 0.866i)T \) |
good | 5 | \( 1 + (0.5 + 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.5 - 4.33i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2 - 3.46i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4 - 6.92i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 - 4.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 3T + 31T^{2} \) |
| 37 | \( 1 + (-2 + 3.46i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1 + 1.73i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 + (-4.5 - 7.79i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 11T + 59T^{2} \) |
| 61 | \( 1 + 6T + 61T^{2} \) |
| 67 | \( 1 + 2T + 67T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + (5 + 8.66i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 3T + 79T^{2} \) |
| 83 | \( 1 + (-3.5 - 6.06i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3.5 + 6.06i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24325568620545621264617678335, −9.290587224480628138235668515716, −8.246954869797783614569292344123, −7.50963196714324918913973012470, −6.50085396884058343081308401086, −5.78913350808345790580688620004, −4.81077483172443124844892896363, −3.94943249384637026847873623693, −2.93240083776323606761493869618, −1.73792528971302509004567208480,
0.53574952050694922372747049499, 2.79876466069493092936522099232, 3.08468524151635009491501527226, 4.37094120031666981405274753454, 5.27967609763227623772526903188, 6.35268468604198654364906778511, 6.82963748780639103006076793117, 7.82696881808736457327883071137, 8.748594456877857504775649499084, 9.722815032513935836087037178044