L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 5-s + (2 − 1.73i)7-s − 0.999·8-s + (−0.5 + 0.866i)10-s − 5·11-s + (−0.499 − 2.59i)14-s + (−0.5 + 0.866i)16-s + (−2 + 3.46i)17-s + (−4 − 6.92i)19-s + (0.499 + 0.866i)20-s + (−2.5 + 4.33i)22-s + 4·23-s − 4·25-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s − 0.447·5-s + (0.755 − 0.654i)7-s − 0.353·8-s + (−0.158 + 0.273i)10-s − 1.50·11-s + (−0.133 − 0.694i)14-s + (−0.125 + 0.216i)16-s + (−0.485 + 0.840i)17-s + (−0.917 − 1.58i)19-s + (0.111 + 0.193i)20-s + (−0.533 + 0.923i)22-s + 0.834·23-s − 0.800·25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 - 0.220i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.975 - 0.220i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7373549650\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7373549650\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2 + 1.73i)T \) |
good | 5 | \( 1 + T + 5T^{2} \) |
| 11 | \( 1 + 5T + 11T^{2} \) |
| 13 | \( 1 + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2 - 3.46i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4 + 6.92i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + (2.5 + 4.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.5 + 2.59i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2 - 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1 + 1.73i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3 - 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.5 - 7.79i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.5 + 9.52i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3 + 5.19i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1 - 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 + (5 - 8.66i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (1.5 - 2.59i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.5 + 6.06i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.5 + 6.06i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.539724846620569600839619587997, −8.455097941681831741228575242327, −7.85306818704118945017810025630, −6.94158105914127859257004100464, −5.78255094467497370465565471221, −4.73545741747289084490952996941, −4.25235097662830384124164097681, −2.97184717759455502003556207532, −1.93831245664780331247692642475, −0.26708513409587534597085687755,
2.04739439191801017158504118707, 3.20587130788720384140379930745, 4.40424962104469368739024281006, 5.22168614633782176726790053995, 5.84497064628903122383256838000, 7.05555626716470911464647289123, 7.83576576311369556179647744827, 8.350707281662787806307649899356, 9.193709751118144522342267709656, 10.33561829894124781275833330163