L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (2.5 − 0.866i)7-s − 0.999·8-s + 6·11-s + (−2.5 − 4.33i)13-s + (2 + 1.73i)14-s + (−0.5 − 0.866i)16-s + (−3 − 5.19i)17-s + (2 − 3.46i)19-s + (3 + 5.19i)22-s + 6·23-s − 5·25-s + (2.5 − 4.33i)26-s + (−0.499 + 2.59i)28-s + (−3 + 5.19i)29-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.944 − 0.327i)7-s − 0.353·8-s + 1.80·11-s + (−0.693 − 1.20i)13-s + (0.534 + 0.462i)14-s + (−0.125 − 0.216i)16-s + (−0.727 − 1.26i)17-s + (0.458 − 0.794i)19-s + (0.639 + 1.10i)22-s + 1.25·23-s − 25-s + (0.490 − 0.849i)26-s + (−0.0944 + 0.490i)28-s + (−0.557 + 0.964i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 - 0.220i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 - 0.220i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.206744625\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.206744625\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.5 + 0.866i)T \) |
good | 5 | \( 1 + 5T^{2} \) |
| 11 | \( 1 - 6T + 11T^{2} \) |
| 13 | \( 1 + (2.5 + 4.33i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2 + 3.46i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + (3 - 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3 - 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 - 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3 - 5.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3 + 5.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3 - 5.19i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8.5 - 14.7i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.465332533031813976941574797422, −9.120305119157853814756542819241, −8.009311720512961542835125142076, −7.25040745162203603056926161355, −6.68477463206211802736074348248, −5.43328226005505491157279947663, −4.80342790808219005803640306317, −3.88000364443450822150639819388, −2.67997420454366301469499555766, −1.00651431091087365133455105355,
1.45918747090600352519881053067, 2.18130811670038671856949365784, 3.88168682084895238490402238393, 4.25284980915254941516585475812, 5.42275544283082452023052915588, 6.33861633985820331710232424977, 7.19898118594152866756694412444, 8.382233093431997321324514039656, 9.105797657443044987251634530276, 9.710392721598376877064088641370