Properties

Label 2-112632-1.1-c1-0-22
Degree $2$
Conductor $112632$
Sign $1$
Analytic cond. $899.371$
Root an. cond. $29.9895$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s + 9-s − 2·11-s + 13-s + 4·15-s + 2·17-s + 4·23-s + 11·25-s + 27-s + 6·29-s + 4·31-s − 2·33-s − 6·37-s + 39-s + 12·41-s + 4·43-s + 4·45-s − 6·47-s − 7·49-s + 2·51-s + 2·53-s − 8·55-s + 14·59-s + 10·61-s + 4·65-s + 4·67-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s + 1/3·9-s − 0.603·11-s + 0.277·13-s + 1.03·15-s + 0.485·17-s + 0.834·23-s + 11/5·25-s + 0.192·27-s + 1.11·29-s + 0.718·31-s − 0.348·33-s − 0.986·37-s + 0.160·39-s + 1.87·41-s + 0.609·43-s + 0.596·45-s − 0.875·47-s − 49-s + 0.280·51-s + 0.274·53-s − 1.07·55-s + 1.82·59-s + 1.28·61-s + 0.496·65-s + 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112632 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112632 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112632\)    =    \(2^{3} \cdot 3 \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(899.371\)
Root analytic conductor: \(29.9895\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 112632,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.531975995\)
\(L(\frac12)\) \(\approx\) \(6.531975995\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 - T \)
19 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.63726254287755, −13.25134206963356, −12.75109846246983, −12.49830021741645, −11.66607090354074, −11.06294587875023, −10.52386087503674, −10.12151814003598, −9.752702293447590, −9.283336642145954, −8.701457439824945, −8.376219074427985, −7.682485118693067, −7.112377107097969, −6.438446316438935, −6.223517008734533, −5.399292472259798, −5.133920484596847, −4.543836033264695, −3.658475537147040, −3.072852877583353, −2.418367986765562, −2.193865481573286, −1.243603091440923, −0.8255009435790962, 0.8255009435790962, 1.243603091440923, 2.193865481573286, 2.418367986765562, 3.072852877583353, 3.658475537147040, 4.543836033264695, 5.133920484596847, 5.399292472259798, 6.223517008734533, 6.438446316438935, 7.112377107097969, 7.682485118693067, 8.376219074427985, 8.701457439824945, 9.283336642145954, 9.752702293447590, 10.12151814003598, 10.52386087503674, 11.06294587875023, 11.66607090354074, 12.49830021741645, 12.75109846246983, 13.25134206963356, 13.63726254287755

Graph of the $Z$-function along the critical line