Properties

Label 2-11200-1.1-c1-0-36
Degree $2$
Conductor $11200$
Sign $1$
Analytic cond. $89.4324$
Root an. cond. $9.45687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s − 2·9-s + 5·11-s + 5·13-s + 5·17-s + 21-s + 8·23-s + 5·27-s + 29-s − 2·31-s − 5·33-s + 4·37-s − 5·39-s + 2·41-s − 4·43-s + 13·47-s + 49-s − 5·51-s − 8·53-s + 4·59-s + 2·61-s + 2·63-s + 8·67-s − 8·69-s + 12·71-s + 6·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s − 2/3·9-s + 1.50·11-s + 1.38·13-s + 1.21·17-s + 0.218·21-s + 1.66·23-s + 0.962·27-s + 0.185·29-s − 0.359·31-s − 0.870·33-s + 0.657·37-s − 0.800·39-s + 0.312·41-s − 0.609·43-s + 1.89·47-s + 1/7·49-s − 0.700·51-s − 1.09·53-s + 0.520·59-s + 0.256·61-s + 0.251·63-s + 0.977·67-s − 0.963·69-s + 1.42·71-s + 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11200\)    =    \(2^{6} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(89.4324\)
Root analytic conductor: \(9.45687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.163128758\)
\(L(\frac12)\) \(\approx\) \(2.163128758\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 13 T + p T^{2} \) 1.47.an
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.61298246211103, −16.05902437328708, −15.34324526550738, −14.76322175170429, −14.03404438464019, −13.89298485813228, −12.79289287668442, −12.54957753191482, −11.75149827907419, −11.17455924045462, −11.01313856088257, −10.03459150167856, −9.438782667877033, −8.772355343368943, −8.424382043019265, −7.401725640444158, −6.742994978588663, −6.183036616999127, −5.687677432020664, −4.986401511677521, −3.972831717726541, −3.477084229840239, −2.703426594221983, −1.320436178537670, −0.8221946206743418, 0.8221946206743418, 1.320436178537670, 2.703426594221983, 3.477084229840239, 3.972831717726541, 4.986401511677521, 5.687677432020664, 6.183036616999127, 6.742994978588663, 7.401725640444158, 8.424382043019265, 8.772355343368943, 9.438782667877033, 10.03459150167856, 11.01313856088257, 11.17455924045462, 11.75149827907419, 12.54957753191482, 12.79289287668442, 13.89298485813228, 14.03404438464019, 14.76322175170429, 15.34324526550738, 16.05902437328708, 16.61298246211103

Graph of the $Z$-function along the critical line