Properties

Label 2-112-7.4-c1-0-2
Degree $2$
Conductor $112$
Sign $0.605 + 0.795i$
Analytic cond. $0.894324$
Root an. cond. $0.945687$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.5 − 2.59i)3-s + (0.5 + 0.866i)5-s + (−2 + 1.73i)7-s + (−3 − 5.19i)9-s + (−0.5 + 0.866i)11-s + 2·13-s + 3·15-s + (−1.5 + 2.59i)17-s + (2.5 + 4.33i)19-s + (1.5 + 7.79i)21-s + (−1.5 − 2.59i)23-s + (2 − 3.46i)25-s − 9·27-s − 6·29-s + (−0.5 + 0.866i)31-s + ⋯
L(s)  = 1  + (0.866 − 1.49i)3-s + (0.223 + 0.387i)5-s + (−0.755 + 0.654i)7-s + (−1 − 1.73i)9-s + (−0.150 + 0.261i)11-s + 0.554·13-s + 0.774·15-s + (−0.363 + 0.630i)17-s + (0.573 + 0.993i)19-s + (0.327 + 1.70i)21-s + (−0.312 − 0.541i)23-s + (0.400 − 0.692i)25-s − 1.73·27-s − 1.11·29-s + (−0.0898 + 0.155i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $0.605 + 0.795i$
Analytic conductor: \(0.894324\)
Root analytic conductor: \(0.945687\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (81, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :1/2),\ 0.605 + 0.795i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.12845 - 0.559408i\)
\(L(\frac12)\) \(\approx\) \(1.12845 - 0.559408i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (2 - 1.73i)T \)
good3 \( 1 + (-1.5 + 2.59i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (-0.5 - 0.866i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (0.5 - 0.866i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + (1.5 - 2.59i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.5 - 4.33i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.5 + 2.59i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + (0.5 - 0.866i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-2.5 - 4.33i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 10T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + (-0.5 - 0.866i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-4.5 + 7.79i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-1.5 + 2.59i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1.5 + 2.59i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-5.5 + 9.52i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 16T + 71T^{2} \)
73 \( 1 + (3.5 - 6.06i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (5.5 + 9.52i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 + (-4.5 - 7.79i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.34836502465437859034610198566, −12.68548751411138965689879934653, −11.80082940926999881885742185286, −10.16813813781579635199109532636, −8.901421381993921158664686369373, −8.015935956480590823106124493460, −6.79382649383715623852401979701, −5.98782144721457735788228088405, −3.33607576344146875796464983280, −2.01435326820631659756192230674, 3.06863409097450051281485096062, 4.17284991819335405692382112761, 5.47814205782257414762550558126, 7.34359416371749824397387048395, 8.869829507626480074278667273485, 9.412728255827074359655560748809, 10.40217630212134984427352541425, 11.36073117391426913042391564366, 13.24688432492786032185953258752, 13.70305202555260878798490505558

Graph of the $Z$-function along the critical line