L(s) = 1 | + i·2-s − 4-s + i·7-s − i·8-s − i·9-s + (−1 − i)11-s − 14-s + 16-s + 18-s + (1 − i)22-s + i·25-s − i·28-s + (−1 + i)29-s + i·32-s + i·36-s + (−1 − i)37-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s + i·7-s − i·8-s − i·9-s + (−1 − i)11-s − 14-s + 16-s + 18-s + (1 − i)22-s + i·25-s − i·28-s + (−1 + i)29-s + i·32-s + i·36-s + (−1 − i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5314225250\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5314225250\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 7 | \( 1 - iT \) |
good | 3 | \( 1 + iT^{2} \) |
| 5 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (1 + i)T + iT^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (1 - i)T - iT^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (1 + i)T + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-1 - i)T + iT^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-1 - i)T + iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 + (-1 + i)T - iT^{2} \) |
| 71 | \( 1 + 2iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.30069270320800848660558005175, −13.13005281311943114418937395804, −12.31230408122088277357194352773, −10.90122155092304599712070645171, −9.372527297341524736564459728269, −8.712784745011879189339577700650, −7.48250950853313495465445459749, −6.09862088320331059470531847771, −5.28799620715987171801146708145, −3.39688143770569238837513800590,
2.27803974715281569194064287612, 4.13114150743211819775629176162, 5.22631067709461204170447629166, 7.34148884483076194341677592755, 8.319056652516069500791959709910, 9.968337038803622567918569441583, 10.42149304749246711383091061266, 11.49301810311495345341512613038, 12.75795018895155456044755509988, 13.45286471755867347856734524811