Properties

Label 2-112-1.1-c9-0-6
Degree $2$
Conductor $112$
Sign $1$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 163.·3-s + 1.92e3·5-s − 2.40e3·7-s + 7.02e3·9-s + 9.01e4·11-s − 3.19e3·13-s − 3.14e5·15-s + 1.16e5·17-s + 1.42e5·19-s + 3.92e5·21-s − 1.27e6·23-s + 1.74e6·25-s + 2.06e6·27-s − 1.42e6·29-s − 9.67e6·31-s − 1.47e7·33-s − 4.61e6·35-s − 8.67e6·37-s + 5.22e5·39-s + 1.32e7·41-s + 2.97e7·43-s + 1.34e7·45-s + 1.07e7·47-s + 5.76e6·49-s − 1.90e7·51-s + 7.07e7·53-s + 1.73e8·55-s + ⋯
L(s)  = 1  − 1.16·3-s + 1.37·5-s − 0.377·7-s + 0.356·9-s + 1.85·11-s − 0.0310·13-s − 1.60·15-s + 0.338·17-s + 0.250·19-s + 0.440·21-s − 0.949·23-s + 0.891·25-s + 0.749·27-s − 0.375·29-s − 1.88·31-s − 2.16·33-s − 0.519·35-s − 0.761·37-s + 0.0361·39-s + 0.732·41-s + 1.32·43-s + 0.490·45-s + 0.322·47-s + 0.142·49-s − 0.394·51-s + 1.23·53-s + 2.55·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $1$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.833791895\)
\(L(\frac12)\) \(\approx\) \(1.833791895\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 2.40e3T \)
good3 \( 1 + 163.T + 1.96e4T^{2} \)
5 \( 1 - 1.92e3T + 1.95e6T^{2} \)
11 \( 1 - 9.01e4T + 2.35e9T^{2} \)
13 \( 1 + 3.19e3T + 1.06e10T^{2} \)
17 \( 1 - 1.16e5T + 1.18e11T^{2} \)
19 \( 1 - 1.42e5T + 3.22e11T^{2} \)
23 \( 1 + 1.27e6T + 1.80e12T^{2} \)
29 \( 1 + 1.42e6T + 1.45e13T^{2} \)
31 \( 1 + 9.67e6T + 2.64e13T^{2} \)
37 \( 1 + 8.67e6T + 1.29e14T^{2} \)
41 \( 1 - 1.32e7T + 3.27e14T^{2} \)
43 \( 1 - 2.97e7T + 5.02e14T^{2} \)
47 \( 1 - 1.07e7T + 1.11e15T^{2} \)
53 \( 1 - 7.07e7T + 3.29e15T^{2} \)
59 \( 1 + 6.40e6T + 8.66e15T^{2} \)
61 \( 1 - 1.69e8T + 1.16e16T^{2} \)
67 \( 1 - 1.16e8T + 2.72e16T^{2} \)
71 \( 1 + 1.44e8T + 4.58e16T^{2} \)
73 \( 1 - 1.60e8T + 5.88e16T^{2} \)
79 \( 1 - 4.89e8T + 1.19e17T^{2} \)
83 \( 1 - 8.31e7T + 1.86e17T^{2} \)
89 \( 1 - 2.08e6T + 3.50e17T^{2} \)
97 \( 1 + 3.15e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.85008182115784568039152684903, −10.83083375820712642349634416672, −9.750036193513049679154958771447, −9.013026720279181921712496320317, −6.99614571838826159299367744698, −6.06837692564788067329713199691, −5.48042735980743809131722129479, −3.85048506004933971653121952462, −1.97238671442306773411372940468, −0.806361644195198712855562134940, 0.806361644195198712855562134940, 1.97238671442306773411372940468, 3.85048506004933971653121952462, 5.48042735980743809131722129479, 6.06837692564788067329713199691, 6.99614571838826159299367744698, 9.013026720279181921712496320317, 9.750036193513049679154958771447, 10.83083375820712642349634416672, 11.85008182115784568039152684903

Graph of the $Z$-function along the critical line