Properties

Label 2-112-1.1-c9-0-1
Degree $2$
Conductor $112$
Sign $1$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.232·3-s − 1.79e3·5-s − 2.40e3·7-s − 1.96e4·9-s − 1.74e4·11-s − 1.22e5·13-s + 416.·15-s + 3.31e5·17-s − 7.61e5·19-s + 557.·21-s − 1.23e6·23-s + 1.25e6·25-s + 9.14e3·27-s + 6.34e5·29-s + 5.38e6·31-s + 4.04e3·33-s + 4.30e6·35-s − 3.03e6·37-s + 2.84e4·39-s − 7.37e6·41-s + 2.06e7·43-s + 3.52e7·45-s − 2.03e7·47-s + 5.76e6·49-s − 7.71e4·51-s − 5.97e7·53-s + 3.11e7·55-s + ⋯
L(s)  = 1  − 0.00165·3-s − 1.28·5-s − 0.377·7-s − 0.999·9-s − 0.358·11-s − 1.18·13-s + 0.00212·15-s + 0.963·17-s − 1.34·19-s + 0.000625·21-s − 0.918·23-s + 0.643·25-s + 0.00331·27-s + 0.166·29-s + 1.04·31-s + 0.000593·33-s + 0.484·35-s − 0.266·37-s + 0.00197·39-s − 0.407·41-s + 0.923·43-s + 1.28·45-s − 0.608·47-s + 0.142·49-s − 0.00159·51-s − 1.03·53-s + 0.459·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $1$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.5103469583\)
\(L(\frac12)\) \(\approx\) \(0.5103469583\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 2.40e3T \)
good3 \( 1 + 0.232T + 1.96e4T^{2} \)
5 \( 1 + 1.79e3T + 1.95e6T^{2} \)
11 \( 1 + 1.74e4T + 2.35e9T^{2} \)
13 \( 1 + 1.22e5T + 1.06e10T^{2} \)
17 \( 1 - 3.31e5T + 1.18e11T^{2} \)
19 \( 1 + 7.61e5T + 3.22e11T^{2} \)
23 \( 1 + 1.23e6T + 1.80e12T^{2} \)
29 \( 1 - 6.34e5T + 1.45e13T^{2} \)
31 \( 1 - 5.38e6T + 2.64e13T^{2} \)
37 \( 1 + 3.03e6T + 1.29e14T^{2} \)
41 \( 1 + 7.37e6T + 3.27e14T^{2} \)
43 \( 1 - 2.06e7T + 5.02e14T^{2} \)
47 \( 1 + 2.03e7T + 1.11e15T^{2} \)
53 \( 1 + 5.97e7T + 3.29e15T^{2} \)
59 \( 1 + 6.03e7T + 8.66e15T^{2} \)
61 \( 1 + 9.44e6T + 1.16e16T^{2} \)
67 \( 1 - 2.19e8T + 2.72e16T^{2} \)
71 \( 1 - 5.58e7T + 4.58e16T^{2} \)
73 \( 1 - 4.54e8T + 5.88e16T^{2} \)
79 \( 1 + 4.51e7T + 1.19e17T^{2} \)
83 \( 1 - 3.34e8T + 1.86e17T^{2} \)
89 \( 1 - 6.51e8T + 3.50e17T^{2} \)
97 \( 1 + 1.42e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.98589561538411938227919978693, −10.90576487845059451001259372811, −9.770164094760371469225003168242, −8.354636365588635050277368087832, −7.70196614638792401387114928651, −6.33256428097613863551267856096, −4.92475904448214918283095815291, −3.66372688289524775516944803269, −2.49515141905530250310974609915, −0.36422511955062043286326279899, 0.36422511955062043286326279899, 2.49515141905530250310974609915, 3.66372688289524775516944803269, 4.92475904448214918283095815291, 6.33256428097613863551267856096, 7.70196614638792401387114928651, 8.354636365588635050277368087832, 9.770164094760371469225003168242, 10.90576487845059451001259372811, 11.98589561538411938227919978693

Graph of the $Z$-function along the critical line