Properties

Label 2-112-1.1-c5-0-4
Degree $2$
Conductor $112$
Sign $1$
Analytic cond. $17.9629$
Root an. cond. $4.23827$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·3-s + 84·5-s − 49·7-s − 143·9-s + 336·11-s + 584·13-s − 840·15-s − 1.45e3·17-s − 470·19-s + 490·21-s + 4.20e3·23-s + 3.93e3·25-s + 3.86e3·27-s + 4.86e3·29-s + 7.37e3·31-s − 3.36e3·33-s − 4.11e3·35-s + 1.43e4·37-s − 5.84e3·39-s + 6.22e3·41-s − 3.70e3·43-s − 1.20e4·45-s + 1.81e3·47-s + 2.40e3·49-s + 1.45e4·51-s − 3.72e4·53-s + 2.82e4·55-s + ⋯
L(s)  = 1  − 0.641·3-s + 1.50·5-s − 0.377·7-s − 0.588·9-s + 0.837·11-s + 0.958·13-s − 0.963·15-s − 1.22·17-s − 0.298·19-s + 0.242·21-s + 1.65·23-s + 1.25·25-s + 1.01·27-s + 1.07·29-s + 1.37·31-s − 0.537·33-s − 0.567·35-s + 1.72·37-s − 0.614·39-s + 0.578·41-s − 0.305·43-s − 0.884·45-s + 0.119·47-s + 1/7·49-s + 0.784·51-s − 1.82·53-s + 1.25·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $1$
Analytic conductor: \(17.9629\)
Root analytic conductor: \(4.23827\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.913436701\)
\(L(\frac12)\) \(\approx\) \(1.913436701\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + p^{2} T \)
good3 \( 1 + 10 T + p^{5} T^{2} \)
5 \( 1 - 84 T + p^{5} T^{2} \)
11 \( 1 - 336 T + p^{5} T^{2} \)
13 \( 1 - 584 T + p^{5} T^{2} \)
17 \( 1 + 1458 T + p^{5} T^{2} \)
19 \( 1 + 470 T + p^{5} T^{2} \)
23 \( 1 - 4200 T + p^{5} T^{2} \)
29 \( 1 - 4866 T + p^{5} T^{2} \)
31 \( 1 - 7372 T + p^{5} T^{2} \)
37 \( 1 - 14330 T + p^{5} T^{2} \)
41 \( 1 - 6222 T + p^{5} T^{2} \)
43 \( 1 + 3704 T + p^{5} T^{2} \)
47 \( 1 - 1812 T + p^{5} T^{2} \)
53 \( 1 + 37242 T + p^{5} T^{2} \)
59 \( 1 + 34302 T + p^{5} T^{2} \)
61 \( 1 - 24476 T + p^{5} T^{2} \)
67 \( 1 - 17452 T + p^{5} T^{2} \)
71 \( 1 + 28224 T + p^{5} T^{2} \)
73 \( 1 - 3602 T + p^{5} T^{2} \)
79 \( 1 + 42872 T + p^{5} T^{2} \)
83 \( 1 - 35202 T + p^{5} T^{2} \)
89 \( 1 - 26730 T + p^{5} T^{2} \)
97 \( 1 + 16978 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85281517066362834294540902119, −11.46925385684037283707828918278, −10.67578636753848078552490568657, −9.458213735908669019422536369776, −8.666386692223588060828649468589, −6.45271223556634567296297340544, −6.19901844386949066235083712506, −4.74456305942540503219199866599, −2.74080421704904215024059084113, −1.07066353749465974691343883950, 1.07066353749465974691343883950, 2.74080421704904215024059084113, 4.74456305942540503219199866599, 6.19901844386949066235083712506, 6.45271223556634567296297340544, 8.666386692223588060828649468589, 9.458213735908669019422536369776, 10.67578636753848078552490568657, 11.46925385684037283707828918278, 12.85281517066362834294540902119

Graph of the $Z$-function along the critical line