L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.5 + 0.866i)3-s + (0.499 − 0.866i)4-s + (0.866 + 0.5i)5-s + 0.999i·6-s + (1.08 − 1.87i)7-s − 0.999i·8-s + (−0.499 − 0.866i)9-s + 0.999·10-s + 4.64·11-s + (0.499 + 0.866i)12-s + (−4.51 − 2.60i)13-s − 2.16i·14-s + (−0.866 + 0.499i)15-s + (−0.5 − 0.866i)16-s + (2.73 − 1.58i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.288 + 0.499i)3-s + (0.249 − 0.433i)4-s + (0.387 + 0.223i)5-s + 0.408i·6-s + (0.408 − 0.707i)7-s − 0.353i·8-s + (−0.166 − 0.288i)9-s + 0.316·10-s + 1.39·11-s + (0.144 + 0.249i)12-s + (−1.25 − 0.723i)13-s − 0.577i·14-s + (−0.223 + 0.129i)15-s + (−0.125 − 0.216i)16-s + (0.663 − 0.383i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.703 + 0.711i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.703 + 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.401057015\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.401057015\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 37 | \( 1 + (-2.83 - 5.37i)T \) |
good | 7 | \( 1 + (-1.08 + 1.87i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 - 4.64T + 11T^{2} \) |
| 13 | \( 1 + (4.51 + 2.60i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.73 + 1.58i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.178 - 0.102i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 3.48iT - 23T^{2} \) |
| 29 | \( 1 + 6.44iT - 29T^{2} \) |
| 31 | \( 1 + 6.19iT - 31T^{2} \) |
| 41 | \( 1 + (-1.61 + 2.80i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 2.70iT - 43T^{2} \) |
| 47 | \( 1 - 0.834T + 47T^{2} \) |
| 53 | \( 1 + (-0.578 - 1.00i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.94 + 2.27i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.21 - 5.32i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.180 + 0.312i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.26 + 3.91i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 4.91T + 73T^{2} \) |
| 79 | \( 1 + (-2.06 - 1.19i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.98 + 12.0i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (13.4 - 7.76i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 0.153iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.809681926770371196047937021194, −9.401706907885463269561339071822, −7.931235075431123347230050652791, −7.13890339189496494026549598261, −6.15851990917107909489687053794, −5.34855939783012311972262742961, −4.43246737360337744002128737726, −3.67457605642131323604930927422, −2.49337603451683394348889396007, −1.01312276703569242280328435318,
1.50658029193892997995906139159, 2.54331548288534698670610974407, 3.95515922411164055587326005326, 4.98282837912838938572348567461, 5.63089379043498011295869673179, 6.65062414500691569110707247103, 7.10592040113169591640275304559, 8.297671079337301209261871756934, 8.983303675776154191114737957564, 9.830325020634276270291662786666