Properties

Label 2-1110-185.84-c1-0-12
Degree $2$
Conductor $1110$
Sign $0.599 + 0.800i$
Analytic cond. $8.86339$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (−2.16 + 0.559i)5-s + 0.999·6-s + (−2.76 + 1.59i)7-s − 0.999i·8-s + (0.499 − 0.866i)9-s + (2.15 + 0.597i)10-s − 4.26·11-s + (−0.866 − 0.499i)12-s + (−2.86 + 1.65i)13-s + 3.19·14-s + (1.59 − 1.56i)15-s + (−0.5 + 0.866i)16-s + (0.167 + 0.0969i)17-s + ⋯
L(s)  = 1  + (−0.612 − 0.353i)2-s + (−0.499 + 0.288i)3-s + (0.249 + 0.433i)4-s + (−0.968 + 0.250i)5-s + 0.408·6-s + (−1.04 + 0.603i)7-s − 0.353i·8-s + (0.166 − 0.288i)9-s + (0.681 + 0.188i)10-s − 1.28·11-s + (−0.249 − 0.144i)12-s + (−0.794 + 0.458i)13-s + 0.853·14-s + (0.411 − 0.404i)15-s + (−0.125 + 0.216i)16-s + (0.0407 + 0.0235i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.599 + 0.800i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.599 + 0.800i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1110\)    =    \(2 \cdot 3 \cdot 5 \cdot 37\)
Sign: $0.599 + 0.800i$
Analytic conductor: \(8.86339\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1110} (1009, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1110,\ (\ :1/2),\ 0.599 + 0.800i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2707564279\)
\(L(\frac12)\) \(\approx\) \(0.2707564279\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 + 0.5i)T \)
3 \( 1 + (0.866 - 0.5i)T \)
5 \( 1 + (2.16 - 0.559i)T \)
37 \( 1 + (-1.46 - 5.90i)T \)
good7 \( 1 + (2.76 - 1.59i)T + (3.5 - 6.06i)T^{2} \)
11 \( 1 + 4.26T + 11T^{2} \)
13 \( 1 + (2.86 - 1.65i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 + (-0.167 - 0.0969i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.557 - 0.964i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + 3.44iT - 23T^{2} \)
29 \( 1 + 4.19T + 29T^{2} \)
31 \( 1 - 1.04T + 31T^{2} \)
41 \( 1 + (-2.83 - 4.91i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 - 0.530iT - 43T^{2} \)
47 \( 1 + 12.6iT - 47T^{2} \)
53 \( 1 + (-6.53 - 3.77i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (-3.27 + 5.67i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-2.65 - 4.59i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-4.40 + 2.54i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-1.82 - 3.16i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 - 1.24iT - 73T^{2} \)
79 \( 1 + (-2.12 - 3.68i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (14.4 + 8.32i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (-6.09 + 10.5i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + 17.1iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.971400538489198940274662772309, −8.978802451619962446636981147333, −8.145267633023018067154768895522, −7.28876671673489399229576066013, −6.53799548874908995347576130564, −5.44170103168432001317581648545, −4.39311559067820383978258813087, −3.26858377422481830130938534647, −2.44768760927172637898897893495, −0.26273477942537520364503046591, 0.66593820859004981049788355698, 2.59557783796102163559585217686, 3.78578706707071790939717156144, 5.01244394332049427611644198875, 5.77222934570583926226536310281, 6.95520956432609082658245326257, 7.48567724769052092699901065176, 8.020256218593110195693558002703, 9.196057325965669594238156549345, 9.964418764023059014469549384421

Graph of the $Z$-function along the critical line