L(s) = 1 | − 2-s + (0.707 − 0.707i)3-s + 4-s + (−2.02 + 0.943i)5-s + (−0.707 + 0.707i)6-s + (−0.516 + 0.516i)7-s − 8-s − 1.00i·9-s + (2.02 − 0.943i)10-s − 0.497i·11-s + (0.707 − 0.707i)12-s − 1.53·13-s + (0.516 − 0.516i)14-s + (−0.766 + 2.10i)15-s + 16-s − 2.55i·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.408 − 0.408i)3-s + 0.5·4-s + (−0.906 + 0.421i)5-s + (−0.288 + 0.288i)6-s + (−0.195 + 0.195i)7-s − 0.353·8-s − 0.333i·9-s + (0.641 − 0.298i)10-s − 0.149i·11-s + (0.204 − 0.204i)12-s − 0.424·13-s + (0.137 − 0.137i)14-s + (−0.197 + 0.542i)15-s + 0.250·16-s − 0.619i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.673 - 0.739i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.673 - 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9309930498\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9309930498\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 + (2.02 - 0.943i)T \) |
| 37 | \( 1 + (-4.64 - 3.93i)T \) |
good | 7 | \( 1 + (0.516 - 0.516i)T - 7iT^{2} \) |
| 11 | \( 1 + 0.497iT - 11T^{2} \) |
| 13 | \( 1 + 1.53T + 13T^{2} \) |
| 17 | \( 1 + 2.55iT - 17T^{2} \) |
| 19 | \( 1 + (-2.36 - 2.36i)T + 19iT^{2} \) |
| 23 | \( 1 - 5.13T + 23T^{2} \) |
| 29 | \( 1 + (7.56 - 7.56i)T - 29iT^{2} \) |
| 31 | \( 1 + (-5.92 - 5.92i)T + 31iT^{2} \) |
| 41 | \( 1 + 2.70iT - 41T^{2} \) |
| 43 | \( 1 - 9.05T + 43T^{2} \) |
| 47 | \( 1 + (9.26 - 9.26i)T - 47iT^{2} \) |
| 53 | \( 1 + (0.413 + 0.413i)T + 53iT^{2} \) |
| 59 | \( 1 + (-5.91 - 5.91i)T + 59iT^{2} \) |
| 61 | \( 1 + (-10.7 - 10.7i)T + 61iT^{2} \) |
| 67 | \( 1 + (9.29 + 9.29i)T + 67iT^{2} \) |
| 71 | \( 1 + 4.10T + 71T^{2} \) |
| 73 | \( 1 + (2.63 - 2.63i)T - 73iT^{2} \) |
| 79 | \( 1 + (0.827 + 0.827i)T + 79iT^{2} \) |
| 83 | \( 1 + (-11.2 - 11.2i)T + 83iT^{2} \) |
| 89 | \( 1 + (-6.24 + 6.24i)T - 89iT^{2} \) |
| 97 | \( 1 + 3.13iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.797218479061382115580196191071, −9.039265610485041319837603387943, −8.312359040168751117151585211522, −7.38234287805761258737240990393, −7.09193634996875701363658910395, −5.96631397697178728713020018795, −4.71588185876787371066370106118, −3.34763853898715103724798971643, −2.72368081860261818147910316792, −1.12233743422713703299977274235,
0.58577271535074833162145820315, 2.28664987087633750713533077299, 3.48872665675930947327918422527, 4.34429121447940162389163787307, 5.38138005674280262683165644484, 6.64164902839562000084005373443, 7.60546686565475214159441527142, 8.031845217046993916120501545079, 9.020680237446006550752720687563, 9.569689180540617294233647752665