L(s) = 1 | − 2-s + (−0.707 + 0.707i)3-s + 4-s + (−2.22 − 0.262i)5-s + (0.707 − 0.707i)6-s + (−2.69 + 2.69i)7-s − 8-s − 1.00i·9-s + (2.22 + 0.262i)10-s + 3.85i·11-s + (−0.707 + 0.707i)12-s + 1.07·13-s + (2.69 − 2.69i)14-s + (1.75 − 1.38i)15-s + 16-s + 3.12i·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−0.408 + 0.408i)3-s + 0.5·4-s + (−0.993 − 0.117i)5-s + (0.288 − 0.288i)6-s + (−1.01 + 1.01i)7-s − 0.353·8-s − 0.333i·9-s + (0.702 + 0.0829i)10-s + 1.16i·11-s + (−0.204 + 0.204i)12-s + 0.297·13-s + (0.720 − 0.720i)14-s + (0.453 − 0.357i)15-s + 0.250·16-s + 0.758i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.444 + 0.895i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.06637717628\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.06637717628\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (2.22 + 0.262i)T \) |
| 37 | \( 1 + (-6.03 + 0.778i)T \) |
good | 7 | \( 1 + (2.69 - 2.69i)T - 7iT^{2} \) |
| 11 | \( 1 - 3.85iT - 11T^{2} \) |
| 13 | \( 1 - 1.07T + 13T^{2} \) |
| 17 | \( 1 - 3.12iT - 17T^{2} \) |
| 19 | \( 1 + (-4.87 - 4.87i)T + 19iT^{2} \) |
| 23 | \( 1 + 6.72T + 23T^{2} \) |
| 29 | \( 1 + (0.240 - 0.240i)T - 29iT^{2} \) |
| 31 | \( 1 + (7.29 + 7.29i)T + 31iT^{2} \) |
| 41 | \( 1 + 9.24iT - 41T^{2} \) |
| 43 | \( 1 + 8.98T + 43T^{2} \) |
| 47 | \( 1 + (3.13 - 3.13i)T - 47iT^{2} \) |
| 53 | \( 1 + (6.75 + 6.75i)T + 53iT^{2} \) |
| 59 | \( 1 + (-1.03 - 1.03i)T + 59iT^{2} \) |
| 61 | \( 1 + (-9.33 - 9.33i)T + 61iT^{2} \) |
| 67 | \( 1 + (-0.0813 - 0.0813i)T + 67iT^{2} \) |
| 71 | \( 1 + 9.73T + 71T^{2} \) |
| 73 | \( 1 + (-3.77 + 3.77i)T - 73iT^{2} \) |
| 79 | \( 1 + (-4.33 - 4.33i)T + 79iT^{2} \) |
| 83 | \( 1 + (5.06 + 5.06i)T + 83iT^{2} \) |
| 89 | \( 1 + (-4.92 + 4.92i)T - 89iT^{2} \) |
| 97 | \( 1 - 2.13iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05038676826392542220442711973, −9.748748295739150195384986015633, −8.843265024094727766273816518035, −7.983402659897735648641388482229, −7.23528272363352276825633970946, −6.17524193078042212043085609824, −5.51513931879872873530947318652, −4.12783234438355608895653986242, −3.36675320460933002359564198860, −1.92654899351432119153713463625,
0.04868863157878892607114418274, 0.991873592833105708046636267766, 3.00923820490147493366566908430, 3.65434139887825347452703261378, 5.01874907319368129834215539721, 6.28529101617620467766938875346, 6.89209006243988410046791646808, 7.60666361799786236595365234289, 8.319056332727795787490776716704, 9.333304597133387899840972558121