Properties

Label 2-1110-185.174-c1-0-13
Degree $2$
Conductor $1110$
Sign $0.805 - 0.592i$
Analytic cond. $8.86339$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 − 0.866i)4-s + (−1.57 + 1.58i)5-s + 0.999·6-s + (3.59 + 2.07i)7-s − 0.999i·8-s + (0.499 + 0.866i)9-s + (−0.568 + 2.16i)10-s + 3.62·11-s + (0.866 − 0.499i)12-s + (−1.85 − 1.06i)13-s + 4.15·14-s + (−2.15 + 0.589i)15-s + (−0.5 − 0.866i)16-s + (−1.00 + 0.577i)17-s + ⋯
L(s)  = 1  + (0.612 − 0.353i)2-s + (0.499 + 0.288i)3-s + (0.249 − 0.433i)4-s + (−0.703 + 0.710i)5-s + 0.408·6-s + (1.36 + 0.785i)7-s − 0.353i·8-s + (0.166 + 0.288i)9-s + (−0.179 + 0.683i)10-s + 1.09·11-s + (0.249 − 0.144i)12-s + (−0.513 − 0.296i)13-s + 1.11·14-s + (−0.556 + 0.152i)15-s + (−0.125 − 0.216i)16-s + (−0.242 + 0.140i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1110\)    =    \(2 \cdot 3 \cdot 5 \cdot 37\)
Sign: $0.805 - 0.592i$
Analytic conductor: \(8.86339\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1110} (1099, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1110,\ (\ :1/2),\ 0.805 - 0.592i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.813199062\)
\(L(\frac12)\) \(\approx\) \(2.813199062\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.866 + 0.5i)T \)
3 \( 1 + (-0.866 - 0.5i)T \)
5 \( 1 + (1.57 - 1.58i)T \)
37 \( 1 + (-6.08 - 0.0539i)T \)
good7 \( 1 + (-3.59 - 2.07i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 - 3.62T + 11T^{2} \)
13 \( 1 + (1.85 + 1.06i)T + (6.5 + 11.2i)T^{2} \)
17 \( 1 + (1.00 - 0.577i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (3.73 - 6.46i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 - 0.363iT - 23T^{2} \)
29 \( 1 + 5.15T + 29T^{2} \)
31 \( 1 - 3.49T + 31T^{2} \)
41 \( 1 + (-6.04 + 10.4i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 - 12.3iT - 43T^{2} \)
47 \( 1 - 2.21iT - 47T^{2} \)
53 \( 1 + (-9.47 + 5.46i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (4.88 + 8.46i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (3.12 - 5.41i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-13.3 - 7.73i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (0.0732 - 0.126i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + 9.63iT - 73T^{2} \)
79 \( 1 + (-7.85 + 13.6i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (11.9 - 6.91i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (5.67 + 9.83i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 11.6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06652108144962503131536723980, −9.097679107687042551950682749697, −8.186842775581914858401329923236, −7.62771291100325060982707563296, −6.45208701275037605415528857915, −5.54957091100796861583373800897, −4.38945804366770054287850131571, −3.88605460190426853236352377368, −2.66168075820422483201134879898, −1.73112950639617144038398659688, 1.06832485390295766590741057826, 2.38845595047087220438930053190, 4.01978820797996770479740541681, 4.33580516728409520990537547408, 5.20888153416545616942867514539, 6.64091451865649756938793311392, 7.29140288950862149848377003597, 8.007890476983684827057945198955, 8.729365332253473328456843577067, 9.443834996937008160671806820507

Graph of the $Z$-function along the critical line