Properties

Label 2-1110-185.159-c1-0-5
Degree $2$
Conductor $1110$
Sign $0.910 - 0.414i$
Analytic cond. $8.86339$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (0.866 + 0.5i)3-s + (−0.499 + 0.866i)4-s + (−2.14 − 0.640i)5-s − 0.999i·6-s + (−2.75 − 1.58i)7-s + 0.999·8-s + (0.499 + 0.866i)9-s + (0.516 + 2.17i)10-s − 3.88·11-s + (−0.866 + 0.499i)12-s + (0.379 − 0.657i)13-s + 3.17i·14-s + (−1.53 − 1.62i)15-s + (−0.5 − 0.866i)16-s + (1.69 + 2.93i)17-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (0.499 + 0.288i)3-s + (−0.249 + 0.433i)4-s + (−0.958 − 0.286i)5-s − 0.408i·6-s + (−1.04 − 0.600i)7-s + 0.353·8-s + (0.166 + 0.288i)9-s + (0.163 + 0.687i)10-s − 1.16·11-s + (−0.249 + 0.144i)12-s + (0.105 − 0.182i)13-s + 0.849i·14-s + (−0.396 − 0.419i)15-s + (−0.125 − 0.216i)16-s + (0.410 + 0.711i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.414i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 - 0.414i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1110\)    =    \(2 \cdot 3 \cdot 5 \cdot 37\)
Sign: $0.910 - 0.414i$
Analytic conductor: \(8.86339\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1110} (529, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1110,\ (\ :1/2),\ 0.910 - 0.414i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8897536622\)
\(L(\frac12)\) \(\approx\) \(0.8897536622\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
3 \( 1 + (-0.866 - 0.5i)T \)
5 \( 1 + (2.14 + 0.640i)T \)
37 \( 1 + (-6.05 - 0.608i)T \)
good7 \( 1 + (2.75 + 1.58i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + 3.88T + 11T^{2} \)
13 \( 1 + (-0.379 + 0.657i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (-1.69 - 2.93i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-4.55 - 2.62i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 - 6.61T + 23T^{2} \)
29 \( 1 + 1.30iT - 29T^{2} \)
31 \( 1 - 6.12iT - 31T^{2} \)
41 \( 1 + (5.17 - 8.95i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 - 9.41T + 43T^{2} \)
47 \( 1 + 5.34iT - 47T^{2} \)
53 \( 1 + (2.76 - 1.59i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (5.34 - 3.08i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (8.45 + 4.88i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (-8.72 - 5.03i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (3.22 - 5.57i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 - 5.84iT - 73T^{2} \)
79 \( 1 + (-7.39 - 4.26i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (6.05 - 3.49i)T + (41.5 - 71.8i)T^{2} \)
89 \( 1 + (1.93 - 1.11i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 - 4.77T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.948753154144727791275786113622, −9.199896418604710713572007043525, −8.223150838615279294750166085016, −7.72383307122901086020786375354, −6.86942683634046605242177410150, −5.41610655134037754917304319417, −4.39442338076164312800993521578, −3.38464206101593202118643446152, −2.94741399152396737619076659359, −1.03922753280173313271862148698, 0.52248131405948794075017055054, 2.66725100291851150900154718582, 3.28861669091078994273565603273, 4.69185017658489571445508566721, 5.66936082523475036367287694163, 6.69011805250497216109749540618, 7.48696861527876581997278163924, 7.86743740691630216536368931529, 9.102037472543450503352848185450, 9.352788330479517084462251241011

Graph of the $Z$-function along the critical line