L(s) = 1 | − 2-s + (0.707 + 0.707i)3-s + 4-s + (1.94 + 1.11i)5-s + (−0.707 − 0.707i)6-s + (0.636 + 0.636i)7-s − 8-s + 1.00i·9-s + (−1.94 − 1.11i)10-s − 2.26i·11-s + (0.707 + 0.707i)12-s + 1.29·13-s + (−0.636 − 0.636i)14-s + (0.586 + 2.15i)15-s + 16-s − 5.74i·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.408 + 0.408i)3-s + 0.5·4-s + (0.867 + 0.496i)5-s + (−0.288 − 0.288i)6-s + (0.240 + 0.240i)7-s − 0.353·8-s + 0.333i·9-s + (−0.613 − 0.351i)10-s − 0.684i·11-s + (0.204 + 0.204i)12-s + 0.358·13-s + (−0.170 − 0.170i)14-s + (0.151 + 0.557i)15-s + 0.250·16-s − 1.39i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.878 - 0.477i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.878 - 0.477i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.730024452\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.730024452\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-1.94 - 1.11i)T \) |
| 37 | \( 1 + (-3.16 - 5.19i)T \) |
good | 7 | \( 1 + (-0.636 - 0.636i)T + 7iT^{2} \) |
| 11 | \( 1 + 2.26iT - 11T^{2} \) |
| 13 | \( 1 - 1.29T + 13T^{2} \) |
| 17 | \( 1 + 5.74iT - 17T^{2} \) |
| 19 | \( 1 + (-4.10 + 4.10i)T - 19iT^{2} \) |
| 23 | \( 1 - 8.53T + 23T^{2} \) |
| 29 | \( 1 + (-1.70 - 1.70i)T + 29iT^{2} \) |
| 31 | \( 1 + (5.81 - 5.81i)T - 31iT^{2} \) |
| 41 | \( 1 + 9.02iT - 41T^{2} \) |
| 43 | \( 1 - 0.853T + 43T^{2} \) |
| 47 | \( 1 + (0.326 + 0.326i)T + 47iT^{2} \) |
| 53 | \( 1 + (6.79 - 6.79i)T - 53iT^{2} \) |
| 59 | \( 1 + (3.51 - 3.51i)T - 59iT^{2} \) |
| 61 | \( 1 + (2.06 - 2.06i)T - 61iT^{2} \) |
| 67 | \( 1 + (3.98 - 3.98i)T - 67iT^{2} \) |
| 71 | \( 1 + 15.2T + 71T^{2} \) |
| 73 | \( 1 + (-11.8 - 11.8i)T + 73iT^{2} \) |
| 79 | \( 1 + (9.04 - 9.04i)T - 79iT^{2} \) |
| 83 | \( 1 + (-9.12 + 9.12i)T - 83iT^{2} \) |
| 89 | \( 1 + (-6.32 - 6.32i)T + 89iT^{2} \) |
| 97 | \( 1 - 9.28iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.680697177208822419189431755196, −9.111015632285411691905856535578, −8.639594057303288110236456656807, −7.32504304640258806280856997239, −6.86197705761297626061634497545, −5.60115427268893846038045838340, −4.95578992136108067867161527828, −3.19329280657750226196687490561, −2.70548990018859394493828399165, −1.20769676042619987643468196025,
1.21968258777845293832580362794, 1.96161532278291641835790662036, 3.28731561092173643481385461103, 4.59664405452226296588592678487, 5.77392776494951748817662223959, 6.46788321367555612894610909439, 7.57246205812799359498927459491, 8.085979673868236697358448844339, 9.127401475536622120301789879447, 9.520083660296484317954955031367