L(s) = 1 | − 2-s + (0.707 + 0.707i)3-s + 4-s + (−1.65 + 1.50i)5-s + (−0.707 − 0.707i)6-s + (−1.06 − 1.06i)7-s − 8-s + 1.00i·9-s + (1.65 − 1.50i)10-s − 4.34i·11-s + (0.707 + 0.707i)12-s + 4.56·13-s + (1.06 + 1.06i)14-s + (−2.23 − 0.111i)15-s + 16-s − 3.41i·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (0.408 + 0.408i)3-s + 0.5·4-s + (−0.741 + 0.670i)5-s + (−0.288 − 0.288i)6-s + (−0.401 − 0.401i)7-s − 0.353·8-s + 0.333i·9-s + (0.524 − 0.474i)10-s − 1.31i·11-s + (0.204 + 0.204i)12-s + 1.26·13-s + (0.283 + 0.283i)14-s + (−0.576 − 0.0287i)15-s + 0.250·16-s − 0.827i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.763 + 0.645i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.763 + 0.645i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9509441603\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9509441603\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (1.65 - 1.50i)T \) |
| 37 | \( 1 + (-5.73 - 2.01i)T \) |
good | 7 | \( 1 + (1.06 + 1.06i)T + 7iT^{2} \) |
| 11 | \( 1 + 4.34iT - 11T^{2} \) |
| 13 | \( 1 - 4.56T + 13T^{2} \) |
| 17 | \( 1 + 3.41iT - 17T^{2} \) |
| 19 | \( 1 + (3.26 - 3.26i)T - 19iT^{2} \) |
| 23 | \( 1 + 3.95T + 23T^{2} \) |
| 29 | \( 1 + (1.85 + 1.85i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3.73 + 3.73i)T - 31iT^{2} \) |
| 41 | \( 1 + 12.2iT - 41T^{2} \) |
| 43 | \( 1 - 2.82T + 43T^{2} \) |
| 47 | \( 1 + (-5.10 - 5.10i)T + 47iT^{2} \) |
| 53 | \( 1 + (-4.58 + 4.58i)T - 53iT^{2} \) |
| 59 | \( 1 + (2.79 - 2.79i)T - 59iT^{2} \) |
| 61 | \( 1 + (-1.42 + 1.42i)T - 61iT^{2} \) |
| 67 | \( 1 + (-3.17 + 3.17i)T - 67iT^{2} \) |
| 71 | \( 1 - 9.34T + 71T^{2} \) |
| 73 | \( 1 + (-6.35 - 6.35i)T + 73iT^{2} \) |
| 79 | \( 1 + (0.205 - 0.205i)T - 79iT^{2} \) |
| 83 | \( 1 + (2.55 - 2.55i)T - 83iT^{2} \) |
| 89 | \( 1 + (4.88 + 4.88i)T + 89iT^{2} \) |
| 97 | \( 1 + 7.85iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.818465019942533613450471556181, −8.773620454815563114910461043278, −8.237236646604684268231299370106, −7.50759612280480225964121745828, −6.46736645371536831377037399408, −5.80181809911102081530089707159, −4.03356000362893613311311806688, −3.55360830400826513920734548871, −2.45955206608280380804777672734, −0.57374140252667364507676565116,
1.19707484556472575997215626162, 2.35668136826758427322990654664, 3.67903880320700547508617341134, 4.58172402248178208215037282194, 5.99063840503991987172930822825, 6.74316400237666936246409113459, 7.70561374168446646211958450152, 8.342837980931647337273626980932, 8.977396155057647523014090743650, 9.688091913885006237750649972149